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Abstract: Herein, we report the coupling of 3-iodo-1H-indazole 1 with a series of terminal alkynes 
2a-d to give desired 1H-indazoles 3a-d with promising yields through C-C single bond formation 
via Sonogashira coupling in the presence of  Ni (II)  pincer complex as catalyst, whereas CuI as 
co-catalyst. The reaction did not occur under metal free conditions. 
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Scheme I. Synthetic path way for compounds 3a-d 

 
1. INTRODUCTION 

Numerous organic compounds, bioactive chemicals, and natural products all contain 
substituted alkynes as organic materials [1]. In addition, they are adaptable synthetic intermediates 
[2-3]. Over the past few years, Sonogashira coupling has emerged as one of the most popular 
techniques for adding alkynyl functionality to organic molecules. The struggle between C-C 
coupling and C -H elimination is further hampered by their sub-stoichiometric presence in relation 
to the substrates. 
 

As a consequence, there have only been two prior reports of successful Sonogashira 
coupling of such substrates, in contrast to recent developments in other cross-coupling methods of 
non-activated alkyl halides [5].  Fu et al. [4] and later Glorius et al. [6].  Demonstrated the coupling 
of alkyl iodides and bromides utilizing Pd (NHC) catalysts in their key pioneering investigations. 

 
A potent and adaptable technique for the production of acetylene is the Sonogashira-

Hagihara [9] reaction of terminal alkynes with aryl halides catalyzed by Pd complexes in the 
presence of a catalytic quantity of CuI and an amine base. Natural compounds, [10] biologically 
active molecules, [11] new organic materials for optical and microelectronic applications, [12] 
dendrimeric, oligomeric, and polymeric materials, [13] macrocycles with acetylene links, [14] 
polyalkynylated molecules have been accomplished using this method. [15] 
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2. EXPERIMENTAL  SECTION 
2.1General information  

               Electro thermal apparatus was used to record the melting point of synthesized compounds 
and are uncorrected. Thin-layer chromatography (TLC) was performed by using Merck silica gel 
60 F254 precoated plates (0.25 mm) and column chromatography was performed by using Silica 
gel (particle size 100-200 mesh). 1H NMR spectra were recorded on a Bruker AMX 400 MHz 
spectrometer. 13C NMR spectra were recorded on a Bruker AMX 100 MHz spectrometer. 

Chemical shift values were given in ppm () with TMS as an internal standard. Mass spectra were 
determined on Agilent LC-1100 (LC-MS) series instrument.  
2.2 General procedure for the synthesis of series of substituted 1H-indazole 3a-d: 

In this context, coupling of 3-iodo-1H-indazole 1 with a series of terminal alkynes 2a-d 
used as a test reaction. After exploring a wide range of conditions to give promising  yield in 
dioxane using a 5 mol % loading of our previously reported Ni II pincer complex [7-8]as the 
catalyst, 3 mol % CuI as the co-catalyst, and 1.4 equiv of Cs2CO3 as the base (Scheme I). The best 
results were obtained at 98 °C. Other combinations of solvents, bases, and co-catalysts led to give 
desired 1H-indazole 3a-d. 

3. RESULTS AND DISCUSSIONS 

A different series of substituted-1H-indazoles 3a-d viz, Sonogashira coupling followed by 
Ni (II) pincer complex  as the catalyst, 3 mol % CuI as the co-catalyst, and 1.4 equiv of Cs2CO3 
as the base . The best results were obtained at 98 °C. Other combinations of solvents, bases, and 
co-catalysts led to promising yields described in Scheme I (Table 1 & 2). 

 

Scheme I 
 
Table: 1 Structures and Name of the compounds: 

Entry Structure IUPAC Name 
1 

 

3-iodo-1H-indazole 

2a 
 

Hex-1-yne 

2b 
 

Oct-1-yne 
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2c 
 

Ethynyl benzene 

2d 
 

Ethynyl trimethylsilane 

3a 

 

3-(hex-1-yn-1-yl)-1H-indazole 

3b 

 

3-(oct-1-yn-1-yl)-1H-indazole 

3c 

 

3-(phenylethynyl)-1H-indazole 

3d 

 

3-((trimethylsilyl)ethynyl)-1H-indazole 

 
Table: 2 Yield (%) and Mass values of synthesized compounds 3a-d: 

Entry MF Yield (%) (M+H)+ ESI 
3a C13H14N2 80 199.12 
3b C15H18N2 68 227.15 
3c C15H10N2 84 219.08 
3d C12H14N2Si 72 215.09 

 
3-(hex-1-yn-1-yl)-1H-indazole 3a:  

 
1H NMR (400 MHz, CDCl3): δ 7.74 (d, J = 8.7 Hz, 1H), 7.42 – 7.10 (m, 3H), 2.38 (d, J = 5.3 Hz, 
2H), 1.52 (dt, J = 10.2, 7.9 Hz, 4H), 1.00 (t, J = 6.5 Hz, 3H).13 C NMR (100 MHz, CDCl3): δ 
145.26, 126.68, 126.29, 122.38, 119.88, 114.62, 112.69, 111.65, 60.81, 29.74, 21.47, 17.08, 14.01. 
3-(oct-1-yn-1-yl)-1H-indazole    3b: 
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1H NMR (400 MHz, CDCl3): δ 7.69 (s, 1H), 7.44 – 7.14 (m, 3H), 2.31 (t, J = 8.0 Hz, 2H), 1.56 
(dd, J = 15.8, 7.9 Hz, 2H), 1.33 (dt, J = 15.3, 8.6 Hz, 6H), 0.99 (t, J = 6.4 Hz, 3H).13 C NMR 
(100MHz, CDCl3): 145.26, 126.68, 126.29, 122.38, 119.88, 114.62, 112.69, 111.65, 60.81, 31.64, 
29.19, 28.50, 22.93, 18.78, 14.01. 
3-(phenylethynyl)-1H-indazole    3c: 

 
1H NMR (400 MHz, CDCl3): δ 7.82 (dd, J = 7.4, 1.2 Hz, 1H), 7.45 (dd, J = 5.4, 2.0 Hz, 2H), 7.42 
– 7.36 (m, 2H), 7.32 (td, J = 7.2, 2.1 Hz, 1H), 7.26 – 7.19 (m, 3H).13 C NMR (100 MHz, CDCl3): 
δ 145.26, 131.41, 128.59, 126.68, 126.29, 123.33, 123.09, 122.38, 119.88, 112.69, 78.51. 
3-((trimethylsilyl) ethynyl)-1H-indazole   3d: 

 
1H NMR (400 MHz, CDCl3): δ 7.71 (d, J = 7.3 Hz, 1H), 7.34 (dt, J = 22.5, 11.2 Hz, 3H), 0.38 
(s, 9H). 1HNMR N-H proton signal disappears in the presence of CDCl3  solvent.13 C NMR (100 
MHz, CDCl3): δ 145.26, 126.68, 126.29, 122.38, 119.88, 112.69, 109.42, and 97.45.                     

 
4. CONCLUSION 

In summary, a novel, cost-effective and practical method was developed to synthesize the series 
of 1H-indazoles 3a-d. The advantages of this method include a simple reaction set-up not requiring 
specialized equipment’s, low-toxicity of the reagent, moderate reaction times, and high product 
yields with excellent purity.  
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