Catalyst ResearchVolume 23, Issue 2, September 2023Pp. 915-920NI (II) PINCER COMPLEX CATALYZED SONOGASHIRA COUPLING OF 3-IODO-
1H-INDAZOLE WITH TERMINAL ALKYNES CUI AS CO-CATALYST

¹G.Laxman, ¹*Kavitha Siddoju, ¹Jagadeesh Kumar Ega

Department of Chemistry, Chaitanya Deemed to be University, Hanamkonda, Telangana 506001, *kavithavbr@gmail.com

Abstract: Herein, we report the coupling of 3-iodo-1*H*-indazole **1** with a series of terminal alkynes **2a-d** to give desired 1*H*-indazoles **3a-d** with promising yields through C-C single bond formation via Sonogashira coupling in the presence of Ni (II) pincer complex as catalyst, whereas CuI as co-catalyst. The reaction did not occur under metal free conditions.

Keywords: 3-iodo-1*H*-indazole, Sonogashira coupling, Ni pincer complex, CuI.

Scheme I. Synthetic path way for compounds 3a-d

1. INTRODUCTION

Numerous organic compounds, bioactive chemicals, and natural products all contain substituted alkynes as organic materials [1]. In addition, they are adaptable synthetic intermediates [2-3]. Over the past few years, Sonogashira coupling has emerged as one of the most popular techniques for adding alkynyl functionality to organic molecules. The struggle between C-C coupling and C -H elimination is further hampered by their sub-stoichiometric presence in relation to the substrates.

As a consequence, there have only been two prior reports of successful Sonogashira coupling of such substrates, in contrast to recent developments in other cross-coupling methods of non-activated alkyl halides [5]. Fu *et al.* [4] and later Glorius *et al.* [6]. Demonstrated the coupling of alkyl iodides and bromides utilizing Pd (NHC) catalysts in their key pioneering investigations.

A potent and adaptable technique for the production of acetylene is the Sonogashira-Hagihara [9] reaction of terminal alkynes with aryl halides catalyzed by Pd complexes in the presence of a catalytic quantity of CuI and an amine base. Natural compounds, [10] biologically active molecules, [11] new organic materials for optical and microelectronic applications, [12] dendrimeric, oligomeric, and polymeric materials, [13] macrocycles with acetylene links, [14] polyalkynylated molecules have been accomplished using this method. [15] Volume 23, Issue 2, September 2023

2. EXPERIMENTAL SECTION

2.1General information

Electro thermal apparatus was used to record the melting point of synthesized compounds and are uncorrected. Thin-layer chromatography (TLC) was performed by using Merck silica gel 60 F254 precoated plates (0.25 mm) and column chromatography was performed by using Silica gel (particle size 100-200 mesh). ¹H NMR spectra were recorded on a Bruker AMX 400 MHz spectrometer. ¹³C NMR spectra were recorded on a Bruker AMX 100 MHz spectrometer. Chemical shift values were given in ppm (δ) with TMS as an internal standard. Mass spectra were determined on Agilent LC-1100 (LC-MS) series instrument.

2.2 General procedure for the synthesis of series of substituted 1*H*-indazole 3a-d:

In this context, coupling of 3-iodo-1*H*-indazole **1** with a series of terminal alkynes **2a-d** used as a test reaction. After exploring a wide range of conditions to give promising yield in dioxane using a 5 mol % loading of our previously reported Ni II pincer complex [7-8]as the catalyst, 3 mol % CuI as the co-catalyst, and 1.4 equiv of Cs_2CO_3 as the base (Scheme I). The best results were obtained at 98 °C. Other combinations of solvents, bases, and co-catalysts led to give desired 1*H*-indazole **3a-d**.

3. RESULTS AND DISCUSSIONS

A different series of substituted-1*H*-indazoles 3a-d viz, Sonogashira coupling followed by Ni (II) pincer complex as the catalyst, 3 mol % CuI as the co-catalyst, and 1.4 equiv of Cs_2CO_3 as the base . The best results were obtained at 98 °C. Other combinations of solvents, bases, and co-catalysts led to promising yields described in Scheme I (**Table 1 & 2**).

Scheme I

Entry	Structure	IUPAC Name
1	l	3-iodo-1 <i>H</i> -indazole
	N N H	
2a	C ₄ H ₉	Hex-1-yne
2b	C ₆ H ₁₃	Oct-1-yne

Table: 1 Structures and Name of the compounds:

China Petroleum Processing and Petrochemical Technology

Catalyst Research	h Vol	Volume 23, Issue 2, September 2023		
2c	Ph		Ethynyl benzene	
2d	TMS		Ethynyl trimethylsilane	
3a	N H	–C₄H ₉	3-(hex-1-yn-1-yl)-1 <i>H</i> -indazole	
3b		–−C ₆ H ₁₃	3-(oct-1-yn-1-yl)-1 <i>H</i> -indazole	
3c	N H	Ph	3-(phenylethynyl)-1 <i>H</i> -indazole	
3d	N H	TMS	3-((trimethylsilyl)ethynyl)-1 <i>H</i> -indaze	ole

Table: 2 Yield (%) and Mass values of synthesized compounds 3a-d:

Entry	MF	Yield (%)	(M+H) ⁺ ESI
3a	$C_{13}H_{14}N_2$	80	199.12
3b	$C_{15}H_{18}N_2$	68	227.15
3c	$C_{15}H_{10}N_2$	84	219.08
3d	$C_{12}H_{14}N_2Si$	72	215.09

3-(hex-1-yn-1-yl)-1*H*-indazole 3a:

¹H NMR (400 MHz, CDCl₃): δ 7.74 (d, J = 8.7 Hz, 1H), 7.42 – 7.10 (m, 3H), 2.38 (d, J = 5.3 Hz, 2H), 1.52 (dt, J = 10.2, 7.9 Hz, 4H), 1.00 (t, J = 6.5 Hz, 3H).¹³ C NMR (100 MHz, CDCl₃): δ 145.26, 126.68, 126.29, 122.38, 119.88, 114.62, 112.69, 111.65, 60.81, 29.74, 21.47, 17.08, 14.01. **3-(oct-1-yn-1-yl)-1H-indazole 3b:**

¹H NMR (400 MHz, CDCl₃): δ 7.69 (s, 1H), 7.44 – 7.14 (m, 3H), 2.31 (t, *J* = 8.0 Hz, 2H), 1.56 (dd, *J* = 15.8, 7.9 Hz, 2H), 1.33 (dt, *J* = 15.3, 8.6 Hz, 6H), 0.99 (t, *J* = 6.4 Hz, 3H).¹³ C NMR (100MHz, CDCl₃): 145.26, 126.68, 126.29, 122.38, 119.88, 114.62, 112.69, 111.65, 60.81, 31.64, 29.19, 28.50, 22.93, 18.78, 14.01.

3-(phenylethynyl)-1*H***-indazole 3c**:

¹H NMR (400 MHz, CDCl₃): δ 7.82 (dd, J = 7.4, 1.2 Hz, 1H), 7.45 (dd, J = 5.4, 2.0 Hz, 2H), 7.42 – 7.36 (m, 2H), 7.32 (td, J = 7.2, 2.1 Hz, 1H), 7.26 – 7.19 (m, 3H).¹³ C NMR (100 MHz, CDCl₃): δ 145.26, 131.41, 128.59, 126.68, 126.29, 123.33, 123.09, 122.38, 119.88, 112.69, 78.51. **3-((trimethylsilyl) ethynyl)-1***H*-indazole 3d:

¹H NMR (400 MHz, CDCl₃): δ 7.71 (d, J = 7.3 Hz, 1H), 7.34 (dt, J = 22.5, 11.2 Hz, 3H), 0.38 (s, 9H). ¹HNMR N-H proton signal disappears in the presence of CDCl₃ solvent.¹³ C NMR (100 MHz, CDCl₃): δ 145.26, 126.68, 126.29, 122.38, 119.88, 112.69, 109.42, and 97.45.

4. CONCLUSION

In summary, a novel, cost-effective and practical method was developed to synthesize the series of 1*H*-indazoles **3a-d**. The advantages of this method include a simple reaction set-up not requiring specialized equipment's, low-toxicity of the reagent, moderate reaction times, and high product yields with excellent purity.

ACKNOWLEDGMENTS

We, the authors, express our sincere gratitude to Department of Chemistry, Chaitanya Deemed to be University, Hanamkonda, for the laboratory facilities provided to conduct this research work.

References

[1] Chemistry of Triple-Bonded Functional Groups; Patai, S., Ed.; Wiley: New York, **1994**.

[2] Modern Acetylene Chemistry; Stang, P. J., Diederich, F., Eds.; VCH: Weinheim, Germany,

1995.

[3] (a) Sonogashira, K. In Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi, E., Ed.; Wiley-Interscience: New York, 2002; pp 493-529. (b) Negishi, E.; Anastasia, L. Chem. ReV. 2003, 103, 1979. (c) Tykwinski, R. R. Angew. Chem., Int. Ed. 2003, 42, 1566. (d) Marsden, J. A.; Haley, M. M. In Metal-Catalyzed Cross-Coupling Reactions, 2nd ed.; De Meijere, A., Diederich, F., Eds.; Wiley-VCH: Weinheim, Germany, 2004. (e) Plenio, H. Angew. Chem., Int. Ed. 2008, 47, 6954.

[4] Eckhardt, M.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 13642.

[5] Recent reviews and hightlights: (a) Netherton, M. R.; Fu, G. C. AdV. Synth.

Catal. 2004, 346, 1525. (b) Frisch, A. C.; Beller, M. Angew. Chem., Int. Ed. 2005, 44, 674. (c) Cardenas, D. J. Angew. Chem., Int. Ed. 2003, 42, 384. (d) Terao, J.; Kambe, N. Acc. Chem. Res. 2008, 41, 1545. (e) Glorius, F. Angew. Chem., Int. Ed. 2008, 47, 8347. (f) Rudolph, A.; Lautens, M. Angew. Chem., Int. Ed. 2009, 48, 2656. (g) Giovannini, R.; Studemann, T.; Dussin, G.; Knochel, P. Angew. Chem., Int. Ed. 1998, 37, 2387.

[6] Altenhoff, G.; Wurtz, S.; Glorius, F. Tetrahedron Lett. 2006, 47, 2925.

[7] Csok, Z.; Vechorkin, O.; Harkins, S. B.; Scopelliti, R.; Hu, X. L. J. Am. Chem. Soc. 2008, 130, 8156.

[8] Vechorkin, O.; Csok, Z.; Scopelliti, R.; Hu, X. L. Chem.sEur. J. 2009, 15, 3889.

[9] (a) Sonogashira, K.; Tohda, J.; Hagihara, N. *Tetrahedron Lett.* **1975**, 16, 4467; (b) Sonogashira, K. In *Comprehensive Organic Synthesis*; Trost, B. M.; Fleming, I., Eds.;

Pergamon Press: Oxford, 1991.

[10] (a) Paterson, I.; Davies, R. D. M.; Marquez, R. Angew. Chem., Int. Ed. 2001, 40, 603; (b) Toyota, M.; Komori, C.; Ihara, M. J. Org. Chem. 2000, 65, 7110; (c) Ioshimura, F.; Kawata, S.; Hirama, M. Tetrahedron Lett. 1999, 40, 8281.

[11] (a) Cosford, N. D. P.; Tehrani, L.; Roppe, J.; Schweiger, E.; Smith, N. D.; Anderson, J.; Bristow, L.; Brodkin, J.; Jiang, X.; McDonald, I.; Rao, S.; Washburn, M.; Varney, M. A. *J. Med. Chem.* 2003, 46, 204; (b) Taylor, E. C.; Dowling, J. E. *J. Org. Chem.* 1997, 62, 1599; (c) Nakamura, H.; Aizawa, M.; Takeuchi, D.; Murai, A.; Shimoura, O. *Tetrahedron Lett.* 2000, 41, 2185; (d) Amiet, G.; Hu["] gel, H. M.; Nurlawis, F. *Synlett* 2002, 495; (e) Liu, T.-Z.; Isobe, M. *Synlett* 2000, 266.

[12] (a) Mongin, O.; Porres, L.; Moreaux, L.; Mertz, J.; Blanchard-Desce, M. Org. Lett. 2002, 4, 719; (b) Brunsveld, L.; Meijer, E. W.; Prince, R. B.; Moore, J. S. J. Am. Chem. Soc. 2001, 123, 7978.

[13] (a) Li, J.; Ambroise, A.; Yang, S. I.; Diers, J. R.; Seth, J.; Wack, C. R.; Bocian, D. F.; Holten, D.; Lindsey, J. S. *J.Am. Chem. Soc.* 1999, 121, 8927; (b) Solomin, V. A.; Heitz, W. *Macromol. Chem. Phys.* 1994, 195, 303; (c) Strachan, J.-P.; Gentemann, S.; Seth, J.; Kalsbeck, W. A.; Lindsey, J. S.; Holten, D.; Bocian, D. F. *Inorg. Chem.* 1998, 37, 1191.

Catalyst Research	Volume 23, Issue 2, September 2023	Pp. 915-920
[14] (a) Ho ["] ger, S.; R	osselli, S.; Ramminger, AD.; Enkelmann, V.	Org. Lett. 2002, 4, 4269; (b)
Li, CJ.; Slaven, W. 7	I., IV; John, V. T.; Banerjee, S. Chem. Commu	ın. 1997 , 1569.
[15] (a) Mongin, O.; F	Papamicael, C.; Hoyler, N.; Gossauer, A. J. Or	rg. Chem. 1998, 63, 5568; (b)
Tobe, Y.; Utsumi, N.;	Nagano, A.; Naemura, K. Angew. Chem., Int.	<i>Ed.</i> 1998 , 37, 1285.

ſ