IMPROVED POWER QUALITY OF GRID-INTEGRATED PHOTOVOLTAIC (PV) SYSTEM USING OPTIMIZATION : A REVIEW

¹Prakash Kumar Dewangan, ².Mithilesh Singh

- 1. Research Scholar, Dept. of Electrical Engineering, Shri Rawatpura Sarkar Uni. Raipur, C.G.
 - 2. Associate Professor& Head, Dept. of Electrical Engineering, Shri Rawatpura Sarkar Uni. Raipur, C.G, India

Abstract

This review examines the use of Distribution Static Synchronous Compensator (DSTATCOM) and optimization methods to increase power quality in grid-connected photovoltaic systems. DSTATCOM compensates for reactive power, regulates voltage, and suppresses harmonic distortions, enhancing overall performance. The review analyzes to highlight its efficacy in addressing voltage fluctuations and power factor deviations and explores the use of optimization techniques like particle swarm optimization, genetic algorithms, and artificial neural networks in enhancing power quality in grid-integrated PV systems. It highlights the potential of these techniques in minimizing losses, optimizing energy utilization, and ensuring reliable power supply. The review also highlights the need for further research to address evolving grid dynamics and emerging technologies, and the integration of energy storage systems and smart grid concepts. Keywords: PV system, MPPT, DSTATCOM, optimization.

1. Introduction

As the globe moves toward more sustainable and renewable energy sources, photovoltaic systems integration into the electrical grid is becoming more and more common. While there are many environmental advantages to using solar electricity, there are drawbacks as well, including problems with power quality during grid operations. Variations in voltage, variances in power factor, and harmonic distortions can result from the intermittent nature of solar energy output and variations in sunshine intensity. It is essential to address these power quality issues if gridconnected PV systems are to integrate effortlessly and operate dependably. Deploying a Distribution Static Synchronous Compensator, a flexible power electronic device that can mitigate harmonics, adjust voltage, and compensate reactive power, is one viable approach. The potential for improving overall grid stability and the quality of power delivered is present when DSTATCOM and PV systems work together in harmony. The goal of this study is to present a thorough analysis of the status of research and advancements in the field of grid-connected photovoltaic systems power quality enhancement. The importance of DSTATCOM as a major mitigating factor and the use of optimization techniques to increase its effectiveness are given special attention. The purpose of this study is to offer a comprehensive knowledge of the gains gained, obstacles faced, and potential future directions in the pursuit of optimal power quality in grid-integrated PV systems by combining data from numerous research and experimental setups. The investigation of optimization methods in conjunction with DSTATCOM demonstrates the

possibility of reaching economical and successful resolutions, advancing the development of a more robust and sustainable energy infrastructure

2. Review of Literature

Malan, et al. (2011) System design and engineering involve optimizing cost, schedule, performance, and risk based on stakeholders' perceived value. These objectives often conflict, and improvement in one can compromise others. Project managers handle cost and schedule, while system engineering handles performance, cost, and risk.

Kothari, (2012) one problem with dynamic programming is the dimensionality curse. Numerous well-known methods have been developed in the last ten years to deal with these issues, including genetic algorithms, neural networks, swarm optimization, differential evolution, hierarchical numerical methods, tabu search, evolutionary programming, and hybrid search techniques. Figure 2: shows the categorization of optimization methods

Zellagui et al (2021) this article uses an arithmetic optimization algorithm to demonstrate the optimal technique for installing a DSTATCOM in an EDS. To get the best DSTATCOM unit sizing, the study presents the Arithmetic Optimization Algorithm. The approach improves the Voltage Stability Index (VSI), Fast Voltage Stability Index (FVSI), and Power-Voltage Stability Index (PVSI) while minimizing APL. The method demonstrates efficiency and excellence in attaining the lowest power losses, voltage profiles, and stability when experienced on two IEEE distribution systems. This method works well and is dependable; it enables hybrid DSTATCOM allocation and multi-objective problem solutions. To reduce Active Power failure and enhance voltage stability index in Electrical Distribution Systems, the study suggests an Arithmetic Optimization Algorithm (AOA) for the best placement of DSTATCOM. The technique is evaluated on IEEE 33 and 69 bus Electrical Distribution Systems (EDS) and the simulation outcome illustrates that installing DSTATCOM optimally improves voltage profiles and drastically lowers power losses. Also presents the idea of Flexible Alternating Current Transmission Systems and how power electronic devices may be used to improve power system controllability. The best way to install DSTATCOM units in Electrical Distribution Systems is discussed in the study using the Arithmetic Optimization Algorithm (AOA). To obtain an appropriate voltage stability margin; it emphasizes the significance of power systems voltage stability and the necessity of reactive power resource scheduling done correctly. The paper mentions previous research that has addressed the best portion of DSTATCOM in distribution systems using different optimization algorithms.

Isha et al. (2021) Researchers have proposed the Fuzzy Lighting Search Algorithm to reduce radial distribution power loss networks by optimizing the assignment of DSTATCOM and PV array units. The method produced enhanced voltage shape values, decreased power failure, and lessened stability issues. The outcomes confirmed FLSA's advantage over alternative optimization methods. The proposed FLSA optimizes the PV array and DSTATCOM configuration in a radial distribution system to boost stability, enhance voltage profile, and lower power loss. The efficacy of the process was confirmed using the Newton Raphson power flow analysis and the IEEE-30 bus test scheme. To decrease power failure in a distribution system, the

study suggests using the Fuzzy-Lightning Search Algorithm to optimize the arrangement of DSTATCOM and photovoltaic array units.

Oda et al. (2021) Proposed Using a multi-objective function for voltage profile, stability index improvement, and price decrease, the research suggests an optimum planning model for integrating Photovoltaic Distributed Generation (PV-DG) with DSTATCOM, taking uncertainties in solar irradiance and load demand into consideration Planning for integration of photovoltaic distributed generation as optimally as possible Because of the erratic variations in load demand and PV production power, it is imperative to design the integration of Photovoltaic Distributed Generation and DSTATCOM as best as possible which, in turn, are connected to changes in solar irradiance and client activity. The PV-DG and DSTATCOM system's optimum planning challenge is resolved in this article. The suggested model takes into description the uncertainties associated with solar irradiation and load require for a multi-objective task that includes price savings, an improved stability index, and a voltage profile. It is suggested to use two ways to improve the basic ALO searching skill with the Modified Ant Lion Optimizer. Levy Flight Distribution is the foundation of the first approach, which aims to fortify algorithm exploration and prevent the fundamental ALO from being used too soon. On the other hand, the second approach focuses on optimizing the algorithm's exploitation by modifying the answers in a spiral manner. The efficiency of the suggested approach is demonstrated using the IEEE 118 bus and 69 bus radial distribution systems, and the resulting simulations are contrasted by means of the fundamental ALO and other recognized optimization methods for power loss reduction under deterministic circumstances. The outcomes of the simulation show that the appropriate integration of two PV-DGs and DSTATCOMs might result in much higher techno-economic advantages as compared to a single system.

Chanakya et al. (2022) Uses a Active and reactive power control, as well as bidirectional power flow, is managed via the AC bus. For two-level voltage source converters, an incremental least mean square with configurable step size is employed in zero voltage regulation modes. The HESS current control method controls the flow of electricity from the DC bus to the grid. The PV-HESS system uses CGWO-tuned VSS-ILMS manage to filter out active load current constituents and reduce DC offset. Simulation results verify stable operation according to IEEE519 standards.

Amin et al. (2022) Researchers have proposed, because solar photovoltaic-based distributed generators (RDGs) are sustainable and clean, their use is growing in popularity. Nonetheless, it might be difficult to decide which locations and ratings for these generators are best. By using Gorilla Troop's optimizer (GTO) to optimize PV-DG allocation and reactive power injection, this article seeks to overcome this. According to the study, incorporating PV-DGs with DSTATCOM capabilities improved overall voltage stability by 25.43% over the basic scenario and greatly decreased overall system cost and voltage deviations.

Shaheen et al. (2023) Hunter-prey optimization is presented in this paper as a useful technique for power distribution systems' effective PV-STATCOM device allocation. The HPO simulates how animals would behave when hunting to decrease electrical power losses and improve voltage profiles while considering fluctuating 24-hour loadings. Tested on IEEE 33-node

and 69-node networks, the suggested HPO significantly reduces voltage fluctuations and energy losses. Throughout the day, the HPO is very reliable and maintains a voltage profile that is higher than the 95% minimum required.

Monica et al. (2023) the improvement of electrical power utilization and conservation in many applications is the main goal of this study. To improve power quality, it presents the SPV-DSTATCOM, a distributed static synchronous compensator based on solar and photovoltaic technology. An MPPT controller and P&O are combined to create a hybrid controller. By using a DC-DC boost converter, DSTATCOM and SPV are integrated. The voltage and current levels are managed with a monarch butterfly optimization algorithm based on greedy control. The use of a self-adaptive crossover operator lowers overall harmonic distortion.

Rastogi et al. (2023) this paper details the integration of a distribution static synchronous compensator, based on a two-level, three-phase, reduced-switch voltage source converter, with a grid-tied solar photovoltaic array. It is recommended to implement a flexible control strategy that can maintain grid current at unity power factor while adhering to the maximum power point. The modified Synchronous Reference Frame theory-based current management solution is utilized to maintain DC-link voltage and voltage balancing across split capacitors. The system is evaluated using a digital real-time simulator once it has been replicated in MATLAB/Simulink.

Jawad et al. (2021) the use of non-linear loads has increased in recent years, causing harmonic non-sinusoidal currents and voltages to affect electricity infrastructure and client equipment. This has led to the development of Active Power Filters (APFs) as a solution for mitigating harmonics and reactive electrical strength compensation in AC networks by non-linear loads. This study is useful for the Ant Colony Algorithm to decrease Total Harmonic Distortion.

Hassan et al. (2023) to increase the efficiency of solar PV arrays, a novel hybrid MPPT move based on fractional open circuit voltage and genetic algorithms is suggested. The method is evaluated in both uniform and non-uniform irradiance scenarios, and it decreases complexity and convergence time. Results indicate a 3% increase in efficiency over traditional FOCV, with an average tracking speed of 0.07s and efficiency of 99.96%.

Teferra et al. (2023) suggest the Resources for wind and solar energy are plentiful sources in micro grid systems, but their uncertain nature can cause power quality and stability issues. Fuzzy-based models can manage this, but have limitations Performance is enhanced via a hybrid fuzzy-PSO intelligent prediction strategy that adds an error correction factor as a new fuzzy input variable. This model increases the forecasting accuracy of solar and wind PV electricity using MATLAB programming and the global optimization toolkit. The correctness of the hybrid fuzzy-PSO model is more advanced than that of the fuzzy and fuzzy-GA models.

Salem et al. (2022) suggest the Solar photovoltaic (PV) is increasingly being used as a renewable energy source to meet global energy demands and decarbonizes electricity production. However, power quality disturbances from PV grid-connected systems can hinder clean power supply. The study examines the system's design, THD problems, and connected meter disturbances, and discusses four techniques for harmonic mitigation.

Shezan et al. (2023) present the Energy consumption is increasing rapidly, making traditional power resources insufficient. Islanded hybrid micro grid systems (IHMS) combine sustainable sources like wind turbines and solar photovoltaic (PV) to meet growing energy demands. However, these sources face technological challenges because of their random characteristics. This article discusses challenges in integrating solar and wind power into existing systems, including variations in frequency, voltage swings, and unreliable solar and wind radiation. It also discusses control strategies to enhance IHMS integration and recent platforms used in IHMS.

Saha et al. (2021) Present the increasing energy demand necessitates innovative solutions to conserve energy. Eco-friendly systems are proposed to save electricity investment and maximize return on investment in solar modules. The photovoltaic industry is efficient and competitive, but challenges like unstable irradiation and panel temperature make electricity generation unstable. MPPT methods are in use to maximize the energy output of PV modules, with perturb & observe, Particle swarm 0ptimization, and Grey Wolf optimization methods tested in MATLAB/Simulink environments.

Yaghoubi et al. (2022) Studied the modified SALP swarm optimization (MSSA) is an effective metaheuristic method for determining PV model parameters that are presented in this study. The updated method increases exploration potential and avoids premature convergence by updating leaders and followers based on new formulae. Detecting different PV model features more effectively than rivals and maybe leading to more optimum solutions is what the MSSA is good at.

Veeraganti et al. (2021) this paper discusses the placement of DSTATCOM in a distribution network system under various conditions. A D-FACTS device called DSTATCOM is utilized for voltage profile enhancement, power loss reduction, and reactive power correction. The optimal placement of DSTATCOM is crucial for ensuring sufficient investment and enhancing voltage stability, power loss decrease, and power factor development. The paper provides a review of various techniques and classifications for determining DSTATCOM placement in distribution networks.

Tarraq et al. (2021) this paper reviews meta-heuristic optimization methods for integrating renewable distributed generation into the electricity grid. It aims to understand current trends and address research gaps in optimal RDG allocation planning while proposing recommendations to expand the field's scope.

Gade et al. (2021) Power quality concerns are a major concern for the electrical power industry, especially in light of dispersed generation and industrial automation. This essay examines the use of the Unified Power Quality Conditioner (UPQC) in distribution networks. UPQC helps integrate renewable energy systems, rectify power factors, and resolve PQ concerns relating to voltage and current.

Akkewar et al. (2021) Studied the Hybrid renewable energy sources have inconsistent output capabilities, requiring a combination of sources for real-time usage. Researchers propose various models for designing hybrid systems, each with its advantages and limitations. This makes

it difficult for engineers to choose the best control strategy for their deployment. This text reviews optimum control strategies and compares them based on parameters like accuracy and response time. It helps system designers select the most efficient control models and recommends methods to improve their efficiency for real-time deployments.

Tabe 1. Power quality improvement models of PV (Solar) systems connected to the grid

Objective Function	System	Load Type	Methodology Used
	Condition		
Enhancement of	Grid-Linked	Nonlinear	Using PWM Inverter,
Power Quality	Photovoltaic	load	MATLAB/SIMULINK The
Total Harmonic	System Utilizing		impact of a high-penetration
Distortion is reduced.			photovoltaic system on total
			harmonic distortion is proposed
			and analyzed using software.
Voltage Regulation	PV System	Nonlinear	PV system with MPPT control
	interfaced Grid	load	and a current-controlled inverter
Taking the maximum	PV in the	Nonlinear	P & O (Perturb and observe)
out. Energy derived	Distribution	load	based MPPT PV System.
from the cell.	network		
Taking the maximum	PV in the	Nonlinear	Incremental conductance-based
out. Energy derived	Distribution	load	MPPT PV System.
from the cell.	network		
Extracting the max.	PV in the	Nonlinear	Fractional open circuit voltage
power from the cell.	Distribution	load	method based MPPT PV
	network		System.
Balances the	Grid-connected	imbalance in	Enhancement of Power Quality
unbalanced current	PV System	the local	through Boost Dual-Level Four-
		load's current	Leg Inverter (Multilevel))
total harmonic	Independent	Nonlinear	LC, LCL, and LLCC filter are
distortion reduction	Photovoltaic	load	examples of passive filters that
	Systems		are used.
Voltage Regulation	PV System	Non-linear	An MPC-based controller is
	interfaced Grid	load	meant to be the coordinator
			between BESS and a collection
			of controllers.
The optimal power	<u> </u>	Non-linear	computational technique as well
flow problem was	connected with	load	as traditional techniques like the
solved (using	grid		firefly algorithm, fuzzy genetic
FACTS devices)			algorithm (GA), differential

			1
			evolution, gravitational search algorithm, particle swarm optimization (PSO), bacterial forging algorithm, sparse optimization, and self-adaptive forging algorithm.
Voltage regulation	PV System connected with grid	Sensitive load	PWM-powered dynamic voltage restorer (DVR) linked to an MPPT solar PV system with an incremental conductance algorithm (INC)
Voltage Profile	PV solar system coupled with a weak utility grid after a fault	Varying load	Battery energy storage and STATCOM at the point of common coupling (PCC)
Voltage Profile	PV solar system coupled with a weak utility grid after a fault.	Varying load	DSTATCOM control method used.
THE	Multiple PV Systems Connected Grid	Non-linear load	Unified Power Quality Control (UPQC)
Reactive power, harmonics	PV System connected to Grid	unbalanced and non- linear loads	DSTATCOM based on Reduced Switch Count Multi Level Inverter.
Harmonics, Load balance, power factor	PV system with grid integration	Differential and Linear Loads	Adaptive noise reduction controls a multifunctional VSC that interfaces a two- to three-phase solar PV grid.
Power Quality and Analysis of Performance (Limitation of harmonic distortion)	Grid-Linked Photovoltaic System Utilizing	Current Requirements for Grid Integration	Using ETAP software

Table 2. Methodologies with Advantages and Disadvantages

Year	Findings	Methodo	logy used	Advantages		Disac	lvant	ages	
	Reduction of	By PW	M Inverter	Easy	to	Posse	esses	a lim	ited
[2019]	THD	using		implement,	low	life.	To	get	an

Catalyst Re	esearch	Volume 23, Issue 2, Nove		Pp. 5031-5044
		MATLAB/SIMULINK	power dissipates;	accurate
		software. (MOSFET is	it can use very	measurement,
		used for PWM)	high frequency.	repeated calibration
				was required.
[2019]	Maximize	The P&O method, the	Advantages of P	Disadvantages of
	the PV cell's	hill climbing	& O method-	another method over
	power	algorithm, the	simplicity,	P&O method
	output.	incremental	accurate,	efficiency and
	1	conductance method,	efficient, rapid	accuracy.
		the short circuit current	response.	Temperature and
		method, and the open	1	solar radiation effects
		circuit voltage method		have not been taken
		are examples of MPPT-		into account, making
		controlled techniques.		the H/W complex and
		controlled techniques.		additional
				udditional
	Makes up for	Enhancement of Power	As the quantity of	Lower-order
[2019]	imbalanced	Quality Through	levels rises, the	
[2017]	current	Multilevel Inverter	output voltage	effectively eliminated
	Current	With the ver inverter	and power	without complex
			decrease and the	design and switching
			harmonic content	control circuits.
				control circuits.
[2016]	Dadwatian of	Used L, LC, LCL,	Profit of Inactive	There are a line
[2016]	THD			They occasionally
	וחט	filter topologies	Filters Stability	have problems
			assured. No	responding. They're
			power source is	
				Inductors always
			costly. Higher	yield a bulky gain of 1
			occurrence rate.	or less.
			Simple to create.	
[2016]	Minimize the	Single-tuned, Double	good	They're big in stature.
	harmonics	tuned, and high-pass	performance to	The gain is
		harmonic filters are	correct the power	consistently 1 or less.
		used	factor and	Hefty when combined
			compensate	with inductors.
			harmonic	with muuctors.
			distortions	
[2017]	Minimize the	The DC-to-DC	Any harmonics	It costs a lot. It offers
[201/]			_	
	harmonics	converter with PI	can be eliminated	a sophisticated

Catalyst Re	search	volume 23, Issue 2, Nove	111061 2023	Pp. 3031-3044
		controller and the	by it. It offers	control mechanism, It
		Shunt Active Power	dependable	is only appropriate to
		Filter with fuzzy logic	operation and is	use the active filter on
		controller.	used for reactive	low or moderate
			power	frequencies.
			compensation	
			and voltage	
			regulation.	
	Minimize the	With PID with Buck-	Effective. It	It is impossible to
[2019]	harmonics	boost converter	adjusts voltage in	obtain a high gain,
			steps of one or	and there is no
			two. A lower	isolation between the
			operating duty	input and output
			cycle is provided.	sides.
			In comparison to	
			most converters,	
			its cost is lower.	
[2019]	Minimize the	With fuzzy logic-based	Incredibly simple	They rely entirely on
	harmonics	control strategy	and clear.	the knowledge and
			The majority	experience of
			efficient way to	humans. Update the
			handle difficult	rules of a fuzzy logic
			problems. It is	control system
			simple to modify	regularly. These
			the system to	systems do not
			change or	support machine
			enhance its	learning or neural
			performance.	networks.
			performance.	
	Minimize the	Using the Adaptive	Detects process	Choosing the kind
[2020]	harmonics	Neural Fuzzy	nonlinearity;	and quantity of
		Inference System and	Adapts	membership features,
		neural networks	automatically;	Where a membership
			Learns quickly;	function is located
			Has a high degree	
			of generalization	
	Improve	*STATCOM	Small, compact,	The primary
[2022]	Voltage	*SVC	no harmonic	drawback of FACTS
_	Profile	*DVR	pollution, high	devices is their high
		*UPFC	response speed.	cost of the procedure,
	1	1		-

Volume 23, Issue 2, November 2023

9	

Catalyst Research

	(Using	*DSTATCOM.	(Main function of	which makes it
	FACTS		power flow	difficult to respond
	Devices)		control, and	quickly and smoothly
			improve Power	to the secure power
			system	system during normal
			constancy)	and steady-state
				operations.
[2023]	Optimal	Particle swarm	(Maximize	Generally speaking, it
	Power Flow	optimization, genetic	voltage profile to	is harder to debug the
	Problem	algorithms,	be tested with	Optimization solution
		gravitational search	IEEE 30 and 57	than the Rule-based
		algorithms,	buses and	Simulation. Requires
		Differential Evolution,	minimize power	large memory to
		Sparse Optimization,	losses to improve	calculate the gradient
		Firefly algorithm,	power flow. more	on the whole dataset.
		Bacterial forging	efficient, more	
		Algorithm Crow	clarity, It	
		search Algorithm. etc	becomes easier to	
			improve and	
			grow.	

Table 3: Taxonomy of the Reviewed Optimization Works

Method used	Data used	Practical	Results
		implication	
Arithmetic Optimization	Data from	(DSTATCOM	Reduction in active power
Algorithm (AOA)	IEEE 33- and	Units in	losses
	69-bus	(EDS).	
Fuzzy-Lightning Search	IEEE 30-bus	DSTATCOM)	Reduce the radial
Algorithm (FLSA)	system	and photo	distribution network's
		voltaic	power loss
Modified Ant Lion	IEEE radial	DSTATCOM	Power loss minimization
Optimizer (MALO) and	distribution	and	under deterministic
Levy Flight Distribution	of 69 and 118	Photovoltaic	conditions
(LFD)	bus schemes.	Distributed	
		Generation	
		(PV-DG)	
PV-HESS scheme uses	IEEE519	Two-level	Control to remove the DC
CGWO-tuned VSS-ILMS	standards.	voltage source	offset and filter out the
manage		converters	

Pp. 5031-5044

		T	
			components of the active load current.
Gorilla troop's optimizer (GTO)	Distributed solar photovoltaic generators	Optimize the allotment of PV-DGs and they're injected reactive power	Enhancing total voltage stability
Hunter-prey optimization (HPO)	node and 69- node networks	PV- STATCOM device	Energy losses and voltage variations reductions.
A greedy control-based monarch butterfly optimization	MPPT (P&O) DSTATCOM	SPV with DSTATCOM	Reduce total harmonic distortion
Reduced-switch, two-level, three-phase VSC based	The modified Synchronous Reference Frame theory-based	(DSTATCOM) combined with a solar photovoltaic.	To keep voltage balance and DC-link voltage stable
Hunter-prey optimization (HPO)	IEEE 33- node and 69- node networks	PV- STATCOM	Energy losses and voltage variations reductions
Ant Colony Algorithm	AC networks with non-linear loads	Active Power Filters (APFs)	Distortion (THD)
Genetic Algorithm and Fractional Open Circuit Voltage.	Tested under both consistent and inconsistent lighting situations	Solar PV arrays and a new hybrid MPPT technique	The technique reduces complexity and convergence time,
Hybrid Fuzzy-PSO intelligent prediction approach	In micro grid systems	MATLAB programming and the global optimization toolbox	To improve the accuracy of solar PV power forecasting models

techniques for harmonic	PV grid-	MATLAB	For harmonic mitigation
mitigation	connected	programming	
	systems can		
	hinder clean		
Different control strategies	Integrating	Hybrid micro	To enhance IHMS
	solar power	grid systems	integration (Islanded
			hybrid micro grid systems)
Particle swarm	Solar	(MPPT)	Extract maximum power
Optimization, and Grey	modules	techniques,	from PV modules
Wolf optimization methods		with perturb &	
		observe	
Modified salp swarm	PV model	Efficient	Better optimal solutions
optimization (MSSA).	parameters	metaheuristic	
		approach	
FACTS device	Distribution	DSTATCOM	Voltage profile
	networks		improvement
Meta-heuristic optimization	Electricity	Distributed	Development of power
	grid	generation	quality
		into the	
		electricity grid	
Unified Power Quality	Distribution	integrate	Correct power factors
Conditioner (UPQC)	systems.	renewable	
		energy	
		systems	
Optimum control strategies	Hybrid	Designing	Improve their efficiency
	renewable	hybrid	for real-time deployments
	energy	systems	

3. Conclusion

This review discusses the use of DSTATCOM and optimization methods to enhance the excellence of energy in PV system grid integration. DSTATCOM reduces power quality issues like harmonics, swell, and voltage sag, ensuring grid stability and improving voltage management, power losses, and reliability. The paper discusses the importance of optimization techniques in optimizing DSTATCOM's performance in PV systems. It suggests that heuristic approaches, artificial intelligence, and mathematical algorithms can be used to find optimal parameter values, ensuring accurate compensation in dynamic conditions. This approach can mitigate power quality concerns and improve the efficiency of PV integration.

References

- [1]. Ahmed, et al. "Techno-Economic Evaluation of Optimal Integration of PV Based DG with DSTATCOM Functionality with Solar Irradiance and Loading Variations." *Mathematics* 10.14: 2543. (2022).
- [2]. Akkewar, Amit Nanaji. "Statistical analysis of hybrid renewable energy systems by using artificial intelligence." *Journal of Next Generation Technology* (ISSN: 2583-021X) 1.2. (2021).
- [3]. Chanakya, Mukul, et al Stability analysis of chaotic grey-wolf optimized grid-tied PV-hybrid storage system during dynamic conditions." *Electronics* 11.4: 567(2022).
- [4].Gade, Swati, Rahul Agrawal, and Ravindra Munje. "Recent trends in power quality improvement: Review of the unified power quality conditioner." *ECTI Transactions on Electrical Engineering, Electronics, and Communications* 19.3: 268-288(2021).
- [5]. Hassan A. Bass O., Masoum A.S.M., "An improved genetic algorithm based fractional open circuit voltage MPPT for solar PV systems", *Energy Reports*, journal homepage: www.elsevier.com/locate/egyr, Energy Reports 9, 1535–1548. (2023)
- [6].Isha, G., and P. Jagatheeswari"Optimal allocation of DSTATCOM and PV array in distribution system employing fuzzy-lightning search algorithm." *Automatika* 62.3-4: 339-352. .(2021).
- [7]. Jawad R., Jawad R., Salman Z., "Ant Colony Algorithm (ACO) Applied for Tuning PI of Shunt Active Power Filter (SAPF)", Iraqi Journal for Electrical and Electronic Engineering, no. 2. (2021).
- [8].Kothari, D.P.. Power system optimization. 2nd National Conference on Computational Intelligence and Signal Processing (CISP), 18. (2012)
- [9]. Malan, c & pretorius, leonMethods and metrics for the design of value-robust systems. ISEM 2011 proceedings, September 21-23, stellenbosch, South Africa, ISEM. (2011).
- [10]. Monica, Swetha, Alok Kumar Singh, and D. Vijaya Kumar.. "Design and implementation of GCMBO control strategy for grid integrated SPV-DSTATCOM." e-Prime-Advances in Electrical Engineering, Electronics, and Energy 6: 100356 (2023)
- [11]. Oda, Eyad S., et al. "Stochastic optimal planning of distribution system considering integrated photovoltaic-based DG and DSTATCOM under uncertainties of loads and solar irradiance." IEEE Access 9: 26541-26555.(2021)
- [12]. Rastogi, Meenakshi, Aijaz Ahmad, and Abdul Hamid Bhat. "Performance investigation of two-level reduced-switch D-STATCOM in grid-tied solar-PV array with stepped P&O MPPT algorithm and modified SRF strategy." Journal of King Saud University-Engineering Sciences 35.6 393-4(2023).
- [13]. Saha B.C., Panday R.S., Awasthi S.R., "Optimization-based optimal control of solar PV system", Proceedings of the Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks ICICV. IEEE Xplore Part Number: CFP21ONG-ART; 978-0-7381-1183-4. (2021).

- [14]. Salem W.A.A., Ibrahim W.G., Abdelsadek A.M., Nafeh A. A., "Grid-connected photovoltaic system impression on power quality of low voltage distribution system", Cogent Engineering, Cogent Engineering, (2022).
- [15]. Shaheen, Abdullah M., et al. "Optimal Allocation of PV-STATCOM Devices in Distribution for Energy Losses Minimization and Voltage Profile Improvement via Hunter-Prey-Based Algorithm." Energies 16.6: 2790(2023).
- [16]. Shaheen, Abdullah M., et al. "Optimal Allocation of PV-STATCOM Devices in Distribution Systems for Energy Losses Minimization and Voltage Profile Improvement via Hunter-Prey-Based Algorithm." Energies 16.6;2790. (2023).
- [17]. Shezan S.A., Kamwa I., Ishraque M.F., Muyeen S.M., Hasan K.N., Saidur R., Rizvi S.M., Shafiullah M., Al-Sulaiman F.A., "Evaluation of Different Optimization Techniques and Control Strategies of Hybrid Microgrid: A Review". Energies 16, 1792. Https:/doi.org/10.3390/en16041792. (2023)
- [18]. Tarraq, Ali, et al. "Meta-heuristic optimization methods applied to renewable distributed generation planning: A review." E3S Web of Conferences. Vol. 234. EDP Sciences, (2021).
- [19]. Teferra D.M., Ngoo L.M.H., Nyakoe G.N., "Fuzzy-based prediction of solar PV and wind power generation for microgrid modeling using particle swarm optimization", journal homepage: www.cell.com/heliyon, https://doi.org/10.1016/j.heliyon..e12802. (2023).
- [20]. Veeraganti, Suma Deepthi, Ramchandra Nittala, and K. Anitha Reddy. "an optimal location of dstatcom in a distribution system using various techniques." international bilingual peer-reviewed refereed research 7.27(2021).
- [21]. Yaghoubi M., Eslami M., Noroozi M., Mohammadi H., kamari O., Palani S., "Modified SALP Swarm Optimization for Parameter Estimation of Solar PV Models", Digital Object Identifier 10.1109/ACCESS..3213746,IEEE access. (2022).
- [22]. Zellagui, Mohamed, et al.."Arithmetic optimization algorithm for optimal installation of DSTATCOM into distribution system based on various voltage stability indices.", 9th International Conference on Modern Power Systems (MPS). IEEE. (2021)