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Abstract 

Many real-world problems are represented using Graph theory.  Graphs are the models of relations.  
A graph is an appropriate way of representing information involving relationship between objects 
where the objects are represented by vertices and the relations are represented by edges.  We need 
to design a fuzzy graph model, when there is vagueness in the description of the objects or in its 
relationships or in both.  In this paper, we introduced perfect Second-degree Fuzzy matching for 
Fuzzy graph based on vertices.  We proved the necessary condition under which they are 
equivalent and also proved that, for a particular condition, a perfect Second-degree Fuzzy 
matching is not a (𝟐, 𝐤) regular Fuzzy graph.  We also discussed perfect Second-degree Fuzzy 
matching and Second-degree Fuzzy matching number for cycle graph. 

Keywords: Fuzzy graph, Second-degree Fuzzy matching, perfect Second-degree Fuzzy 
matching, Second-degree Fuzzy matching number 

1. Introduction 

The concept of Fuzzy sets and Fuzzy relations was introduced by L. A.Zadeh [8] in the year 1965.  
The concept of Fuzzy graph was introduced by Rosenfeld[4] in the year 1975. The concept of 
regular Fuzzy graphs and regular property ofFuzzy graphs was introduced by Nagoor Gani and 
Radha[2][3].  New approach on vertex regular Fuzzy graph was introduced by Kailash Kumar 
Kakkad and Sanjay Sharma[1].  Shakila Banu and Akilandeswari[7] introduced the concept of 
square perfect Fuzzy matching.  Seethalakshmi and Gnanajothi[5] derived the necessary condition 
for a Fuzzy graph on a cycle.  The concept of d2-degree and total d2-degree of a vertex in a Fuzzy 
graph was defined by Sekar and Santhimaheswari[6]. 

2. Preliminaries 

Definition2.1: 

A fuzzy graph denoted by G: (σ, μ) on G∗: (V, E) is a pair of functions (σ, μ) where σ: V → [0,1] is 
a fuzzy subset of a non-empty set V and μ: V X V → [0, 1]is a symmetric fuzzy relation on σ such 
that for all u, v in V the relation μ(u, v) =  μ(uv) ≤ σ(u) ∧ σ(v) is satisfies, where σ and μ are 
called membership functions.  A fuzzy graph G is complete if μ(u, v) =  μ(uv) = σ(u) ∧ σ(v) 
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where uv denotes the edge between u and v.   G∗: (V, E) is called the underlying crisp graph of the 
fuzzy graph G: (σ, μ). 

Definition2.2: 

Let G: (σ, μ) be a fuzzy graph.  The degree of a vertex u is 

d(u) = ෍ μ(uv)

୳ஷ୴

 

sinceμ(uv) > 0 foruv ∈ E and μ(uv) = 0 for uv ∉ E. 

The minimum degree of G is δ(G) =∧ {d(u)/u ∈ V}. 

The maximum degree of G is ∆(G) =∨ {d(u)/u ∈ V}. 

Definition2.3: 

For a given graph G, the dଶ degree of a vertexu in G denoted by dଶ(u) means the number of vertices 
at a distance 2 away from u. 

Definition2.4: 

For a given fuzzy graph G, the dଶ degree of a Vertex u is 

dଶ(u) = ෍ μଶ(uv)
୳ஷ୴

୳,୴∈୚

 

where, 

μଶ(uv) =  ൛μ(uvଵ) ∧  μ൫vଵ,v൯ൟ. 

Also μ(uv) = 0 for uv ∉ E. 

The minimum dଶdegree of G is δଶ(G) =∧ {dଶ(u)/u ∈ V}. 

The maximum  dଶdegree of G is ∆ଶ(G) =∨ {dଶ(u)/u ∈ V}. 

Definition2.5: 

A fuzzy graph G is said to be (2, k) regular or  dଶ regular if dଶ(u) = kfor all u in G. 

3. Perfect Second-degree Fuzzy Matching 

Definition 3.1: 

Let G: (σ, μ) be a fuzzy graph on G∗: (V, E). A subset S of V is called a Second-degree fuzzy 
matching if for each vertex u we have, 

෍ μଶ(uv)
୳ஷ୴

୳,୴∈୚

≤ σ(u) 

Example 3.1 
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Let G: (σ, μ) be a fuzzy graph on the cycleG∗: (V, E) where V =  {vଵ, vଶ, vଷ, vସ, vହ, v଺} and  
E =  {eଵ, eଶ, eଷ, eସ, eହ, e଺}with eଵ = vଵvଶ, eଶ = vଶvଷ, eଷ = vଷvସ, eସ = vସvହ , eହ = vହv଺, e଺ =

v଺vଵ 

σ(vଵ) = 0.4, σ(vଶ) = 0.3, σ(vଷ) = 0.5, σ(vସ) = 0.8, σ(vହ) = 0.2, σ(v଺) = 0.5 

μ(eଵ) =0.2, μ(eଶ) =0.3, μ(eଷ)=0.4, μ(eସ) = 0.2,  μ(eହ)=0.1, μ(e଺)=0.35 

 
Figure 1: second-degree fuzzy matching 

෍ μଶ(vଵvଷ)
୴భஷ୴య

୴భ,୴య∈୚

=  μଶ(vଵvଷ) +  μଶ(vଵvହ) 

= {μ(vଵ vଶ ) ∧ μ(vଶvଷ)}  +  {μ(vଵ v଺ ) ∧ μ(v଺vହ)} 

= {0.2 ∧ 0.3}  + {0.35 ∧ 0.1} 

=0.2 + 0.1 

=0.3 ≤  σ(vଵ) 

෍ μଶ(vଶvସ)
୴మஷ୴ర

୴మ,୴ర∈ ୚

=  0.3 + 0.2 =  0.5 ≰  σ(vଶ) 

෍ μଶ(vଷvହ)
୴యஷ୴ఱ

୴య,୴ఱ∈ ୚

=  0.2 + 0.2 =  0.4  ≤  σ(vଷ) 

෍ μଶ(vସv଺)
୴రஷ୴ల

୴ర,୴ల∈ ୚

=  0.1 + 0.3 =  0.4  ≤  σ(vସ) 

෍ 𝜇ଶ(𝑣ହ𝑣ଵ)
௩ఱஷ௩భ

௩ఱ,௩భ∈ ௏

=  0.1 + 0.2 =  0.3  ≰  𝜎(𝑣ହ) 

෍ 𝜇ଶ(𝑣଺𝑣ଶ)
௩లஷ௩మ

௩ల,௩మ∈ ௏

=  0.2 + 0.1 =  0.3  ≤  𝜎(𝑣଺) 
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Thus 𝑆 =  {𝑣ଵ, 𝑣ଷ, 𝑣ସ, 𝑣଺} is a 𝑆𝑒𝑐𝑜𝑛𝑑-degree Fuzzy matching in 𝐺. 

Definition 3.2: 

A Second-degree Fuzzy matching 𝑆 is called a Perfect Second-degree fuzzy matching if,  
 

෍ 𝜇ଶ(𝑢𝑣)
௨ஷ௩

௨,௩∈௏

= 𝜎(𝑢) 

Definition 3.3: 

Let 𝐺: (𝜎, 𝜇) be a Fuzzy graph and 𝑆 be a Second-degree fuzzy matching.  Then Second-degree 
fuzzy matching number 𝛤(𝐺) is defined to be 

𝛤(𝐺) =  ෍ 𝜇ଶ(𝑢𝑣)

௨ఢௌ

 

Example 3.2 

In this examplewe have considered Figure 1 and Example 3.1. 

𝛤(𝐺) =  ෍ 𝜇ଶ(𝑢𝑣)

௨ఢௌ

 

where 𝑆 =  {𝑣ଵ, 𝑣ଷ, 𝑣ସ, 𝑣଺} 

𝛤(𝐺)  = 𝜇ଶ(𝑣ଵ𝑣ଷ) +  𝜇ଶ(𝑣ଷ𝑣ହ) + 𝜇ଶ(𝑣ସ𝑣଺) +  𝜇ଶ(𝑣଺𝑣ଶ)             

           = 0.3 + 0.4 + 0.4 + 0.3 = 1.4 

Theorem3.1: 

Let 𝐺: (𝜎, 𝜇) be a Fuzzy graph on the cycle 𝐺∗: (𝑉, 𝐸).  Then edges of the Fuzzy graph of 𝐺 is half 
of their vertices iff, all the vertices of 𝐺 are perfect Second-degree Fuzzy matching and is 
equivalent to (2, 𝑘) is regular fuzzy graph 

Proof: 

Suppose that 𝜎 is a constant function. 

Let 𝜎(𝑢) = 𝑘 is a constant for all 𝑢 𝜖 𝑉  and (𝑢𝑣) =
௞

ଶ
, for all (𝑢𝑣)𝜖 𝐸 

Assume that 𝐺 is a (2, 𝑘) regular Fuzzy graph on the cycle 𝐺∗: (𝑉, 𝐸).   

Then 𝑑ଶ(𝑢) = 𝑘 

By definition of 𝑑ଶ degree of a vertex in Fuzzy graph 

𝑑ଶ(𝑢) =  ෍ 𝜇ଶ(𝑢𝑣)
௨ஷ௩

௨,௩∈௏

 

That is, 
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෍ 𝜇ଶ(𝑢𝑣)
௨ஷ௩

௨,௩∈௏

= 𝑘 

Since 𝐺 is a (2, 𝑘) regular Fuzzy graph 

⟹ ෍ 𝜇ଶ(𝑢𝑣)
௨ஷ௩

௨,௩∈௏

=  𝜎(𝜇) 

Therefore Each vertex of 𝑢 satisfies the Perfect second-degree Fuzzy matching in 𝐺. 

Now suppose that 𝑉 is a perfect 𝑠𝑒𝑐𝑜𝑛𝑑-degree Fuzzy matching in 𝐺. 

Since 𝐺 is a Fuzzy graph on the cycle and only two edges are incident with each vertex for cycles. 

For any vertex 𝑢 𝜖 𝑉 

⟹ ෍ 𝜇ଶ(𝑢𝑣)
௨ஷ௩

௨,௩∈௏

=  𝜎(𝑢) 

By definition, 

𝑑ଶ(𝑢) =  ෍ 𝜇ଶ(𝑢𝑣)
௨ஷ௩

௨,௩∈௏

 

                   ⟹ 𝑑ଶ(𝑢) =  𝜎 (𝑢) 

            ⟹ 𝑑 ଶ (𝑢) =  𝑘 

Hence𝐺 is (2, 𝑘) regular Fuzzy graph on the cycle. 

The converse of the theorem is trivially true. 

Example 3.3 
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Figure 2:(2,0.6)- regular fuzzy graph 

Let 𝐺: (𝜎, 𝜇) be a Fuzzy graph on the cycle 𝐺∗ ∶  (𝑉, 𝐸) where 𝑉 =  {𝑣ଵ, 𝑣ଶ, 𝑣ଷ, 𝑣ସ, 𝑣ହ, 𝑣଺} and 
𝐸 =  {𝑒ଵ, 𝑒ଶ, 𝑒ଷ, 𝑒ସ, 𝑒ହ, 𝑒଺} with 𝑒ଵ = 𝑣ଵ𝑣ଶ, 𝑒ଶ = 𝑣ଶ𝑣ଷ, 𝑒ଷ = 𝑣ଷ𝑣ସ, 𝑒ସ = 𝑣ସ𝑣ହ,  

𝑒ହ = 𝑣ହ𝑣଺, 𝑒଺ = 𝑣଺𝑣ଵ 

𝜎(𝑣ଵ) = 0.6, 𝜎(𝑣ଶ) = 0.6, 𝜎(𝑣ଷ) = 0.6, 𝜎(𝑣ସ) = 0.6, 𝜎(𝑣ହ) = 0.6 , 𝜎(𝑣଺) = 0.6 

𝜇(𝑒ଵ) =0.3, 𝜇(𝑒ଶ) =0.3, 𝜇(𝑒ଷ)=0.3, 𝜇(𝑒ସ)=0.3, 𝜇(𝑒ହ)=0.3, 𝜇(𝑒଺)=0.3 

෍ 𝜇ଶ(𝑣ଵ𝑣ଷ)
௩భஷ௩య

௩భ,௩య∈௏

=  𝜇ଶ(𝑣ଵ𝑣ଷ) +  𝜇ଶ(𝑣ଵ𝑣ହ) 

= {𝜇(𝑣ଵ 𝑣ଶ ) ∧  𝜇(𝑣ଶ𝑣ଷ)}  + {𝜇(𝑣ଵ 𝑣଺) ∧ 𝜇(𝑣଺𝑣ହ)} 

= {0.2 ∧  0.2}  + {0.2 ∧ 0.2} 

=0.3 + 0.3 

=0.6 =  𝜎(𝑣ଵ) 

Similarly, 

෍ 𝜇ଶ(𝑣ଶ𝑣ସ)
௩మஷ௩ర

௩మ,௩ర∈ ௏

=  0.3 + 0.3 =  0.6 =  𝜎(𝑣ଶ) 

෍ 𝜇ଶ(𝑣ଷ𝑣ହ)
௩యஷ௩ఱ

௩య,௩ఱ∈ ௏

=  0.3 + 0.3 =  0.6 =  𝜎(𝑣ଷ) 
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෍ 𝜇ଶ(𝑣ସ𝑣଺)
௩రஷ௩ల

௩ర,௩ల∈ ௏

=  0.3 + 0.3 =  0.6 =  𝜎(𝑣ସ) 

෍ 𝜇ଶ(𝑣ହ𝑣ଵ)
௩ఱஷ௩భ

௩ఱ,௩భ∈ ௏

=  0.3 + 0.3 =  0.6 =  𝜎(𝑣ହ) 

෍ 𝜇ଶ(𝑣଺𝑣ଶ)
௩లஷ௩మ

௩ల,௩మ∈ ௏

=  0.3 + 0.3 =  0.6 =  𝜎(𝑣଺) 

 

Hence 𝐺 is a perfect𝑆𝑒𝑐𝑜𝑛𝑑-degree Fuzzy matching and also (2, 0.6) regular Fuzzy graph. 

Theorem3.2: 

Let 𝐺: (𝜎, 𝜇) be a (2, 𝑘) regular Fuzzy graph on the cycle 𝐺∗: (𝑉, 𝐸). 𝜎(𝑢) and 𝜇(𝑢𝑣)are constant 

functions where 𝜇(𝑢𝑣) ≤  𝜎(𝑢)and 𝜇(𝑢𝑣) ≠
ଵ

ଶ
𝜎(𝑢) for all (𝑢𝑣) 𝜖 𝐸 then 𝑉 is not a perfect 

Second-degree Fuzzy matching of 𝐺. 

Proof: 

Let 𝜎(𝑢) = k and 𝜇(𝑢𝑣) = 𝑐  are constant functions for all 𝑢, 𝑣 𝜖 𝑉 where 𝑐 ≤ 𝑘 and 𝑐 ≠ 𝑘/2 

To prove 𝑉 is not a perfect Second-degree  Fuzzy matching of 𝐺. 

Suppose that 𝐺 is a Fuzzy graph on the cycle and only two edges are incident with each vertex for 
the cycles. 

For any vertex 𝑢 𝜖 𝑉 

⟹ ෍ 𝜇ଶ(𝑢𝑤)
௨ ஷ௪

௨,௪∈௏

= 𝜇ଶ(𝑢𝑤) + 𝜇ଶ(𝑢𝑣) 

= 𝑐 + 𝑐 

    = 2𝑐 ≤ 𝑘 

    = 𝑐 ≤ 𝑘/2 but 𝑐 ≠ 𝑘/2 

        = 𝑐 < 𝑘/2 

 ⟹ ෍ 𝜇ଶ(𝑢𝑤)  ≠ 𝑘
௨ ஷ௪

௨,௪∈௏

 

 

       ⟹ ෍ 𝜇ଶ(𝑢𝑤)  ≠ 𝜎(𝑢)
௨ ஷ௪

௨,௪∈௏
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Hence 𝑉 is not a perfect Second-degree Fuzzy matching of 𝐺. 

Example 3.4 

Let 𝐺: (𝜎, 𝜇) be a Fuzzy graph on the cycle 𝐺∗: (𝑉, 𝐸)where 𝑉 =  {𝑣ଵ, 𝑣ଶ, 𝑣ଷ, 𝑣ସ}and 𝐸 =

 {𝑒ଵ, 𝑒ଶ, 𝑒ଷ, 𝑒ସ} with 𝑒ଵ = 𝑣ଵ𝑣ଶ, 𝑒ଶ = 𝑣ଶ𝑣ଷ, 𝑒ଷ = 𝑣ଷ𝑣ସ, 𝑒ସ = 𝑣ସ𝑣ଵ 

𝜎(𝑣ଵ) = 0.6, 𝜎(𝑣ଶ) = 0.6, 𝜎(𝑣ଷ) = 0.6, 𝜎(𝑣ସ) = 0.6 

𝜇(𝑒ଵ) =0.2, 𝜇(𝑒ଶ) =0.2, 𝜇(𝑒ଷ)=0.2, 𝜇(𝑒ସ)=0.2 

 

Figure 3: Not a perfect Second-degree fuzzy matching 

For any vertex 𝑢 𝜖 𝑉 we have 

෍ 𝜇(𝑢𝑣)
௨ஷ௩

௨,௩∈௏

= 𝜎(𝑢) 

෍ μ(vଵvଶ)
௩భஷ௩మ

௩భ,୴మ∈ ୚

=  0.2 + 0.2 =  0.4 ≠  σ(vଵ) 

෍ μ(vଶvଷ)
୴మஷ୴య

୴మ,୴య∈ ୚

=  0.2 + 0.2 =  0.4 ≠  σ(vଶ) 

෍ μ(vଷvସ)
୴యஷ୴ర

୴య,୴ర∈ ୚

=  0.2 + 0.2 =  0.4 ≠  σ(vଷ) 

෍ μ(vସvଵ)
୴రஷ୴భ

୴ర,୴భ∈ ୚

=  0.2 + 0.2 =  0.4 ≠  σ(vସ) 

Hence G is not a Perfect Second-degree Fuzzy matching. 

Theorem3.3: 
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Let G be a Perfect Second-degree Fuzzy matching on the cycle G∗: (V, E) of length n ≥ 5.  If  

σ(u୧) = ൞

k
4  ൗ , i = 1,2, n − 1, n           

k
3ൗ , i =  3, 4, … n − 2

for all u ∈ V           

 

and  

     μ(e୧) = ൞

k
6  ൗ , i = 1, 2, 3, 4, … n − 1

k
12ൗ , i = n                   

for all(uv) ∈ E      

 

Then G is not (2, k) regular Fuzzy graph. 

Proof: 

Let G: (σ, u) be a Perfect Second-degree Fuzzy matching on the Cycle G∗: (V, E)is any  
length ≥ 5. 

To prove that G is not a (2, k) regular Fuzzy graph. 

Let vଵ, vଶ, vଷ, … … . v୬ be the vertices and   eଵ, eଶ, … … e୬ be edges of a cycle onG∗ in that order. 

By definition, 

dଶ(u) =  ෍ μଶ(uv)
୳ஷ୴

୳,୴∈୚

 

dଶ(vଵ) =  ෍ μଶ(vଵvଷ)
୴భஷ୴య

୴భ,୴య∈୚

 

             = μଶ(vଵvଷ) + μଶ(vଵv୬ିଵ) 

             = {μ(vଵ vଶ ) ∧  μ(vଶvଷ)}  + {μ(vଵ v୬ ) ∧  μ(v୬v୬ିଵ)} 

             = {μ(eଵ) ∧  μ(eଶ)}  + {μ(e୬ ) ∧  μ(e୬ିଵ)} 

             = ൛k
6ൗ ∧  k

6ൗ ൟ  + ൛k
12ൗ ∧  k

6ൗ ൟ 

             = k
6ൗ +  k

12ൗ =  k
4ൗ =  σ(vଵ) 

dଶ(vଶ) = {μ(eଶ) ∧  μ(eଷ)}  + {μ(eଵ) ∧  μ(e୬)} 

               = ൛k
6ൗ ∧  k

6ൗ ൟ  + ൛k
6ൗ ,∧ k

12ൗ ൟ 

               = k
6ൗ +  k

12ൗ =  k
4 ൗ = σ(vଶ) 

d(vଷ)  = {μ(eଷ) ∧  μ(eସ)}  + {μ(eଶ) ∧  μ(eଵ)} 
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         =൛k
6ൗ ∧  k

6ൗ ൟ  + ൛k
6ൗ ∧ k

6ൗ ൟ 

            = k
6ൗ +  k

6ൗ =  k
3ൗ = σ(vଷ) 

- - - - - 

- - - - - 

- - - - - 

dଶ(v୧) = {μ(e୧) ∧  μ(e୧ାଵ)}  + {μ(e୧ିଵ) ∧  μ(e୧ିଶ)} 

=k
6ൗ +  k

6ൗ =  k
3ൗ = σ(v୧) 

 

- - - - 

- - - - - 

- - - - - 

h 

 
dଶ(v୬ିଵ)      = {μ(e୬ିଵ) ∧  μ(e୬)}  + {μ(e୬ିଶ) ∧  μ(e୬ିଷ)} 

                        =  ൛k
6ൗ ∧  k

12ൗ ൟ  + ൛k
6ൗ ,∧ k

6ൗ ൟ 

                         = k
12ൗ +  k

6ൗ =  k
4ൗ = σ(v୬ିଵ) 

dଶ(v୬) =  {μ(e୬ିଵ) ∧  μ(e୬)}  + {μ(e୬ିଶ) ∧  μ(e୬ିଷ)} 

= ൛k
6ൗ ∧  k

12ൗ ൟ  + ൛k
6ൗ ∧ k

6ൗ ൟ = k
12ൗ +  k

6ൗ =  k
4ൗ = σ(v୬) 

Hence G is not a(2, k) regular Fuzzy graph 

Conclusion 

In this paper, we have introduced perfect Second-degree Fuzzy matching for Fuzzy graph based 
on vertices on the cycle.  We proved the necessary condition under which they are equivalent and 
also proved that, for a particular condition, a perfect Second-degree Fuzzy matching is not a 
(𝟐, 𝐤)regular Fuzzy graph.  We also discussed perfect Second-degree Fuzzy matching and 
Second-degree Fuzzy matching number for cycle graph. For the future work we can extend to 
complete graph regular graph and finally for any connected graph. 
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