# PERFECT SECOND-DEGREE FUZZY MATCHING FOR FUZZY GRAPH BASED ON VERTICES 

Dr. B. Uma Devi ${ }^{1}$, J. Anusha ${ }^{2}$ R, K. Shanmugha Priya ${ }^{3}$<br>${ }^{1}$ Associate Professor, Department of Mathematics, S. T. Hindu College, Nagercoil, Affiliated to Manonmanium Sundaranar University, Abishekapati, Tirunelveli.<br>${ }^{2}$ Research Scholar, Reg no: 18223152092019 ,Department of Mathematics, S. T. Hindu College, Nagercoil, Affiliated to Manonmanium Sundaranar University, Abishekapati, Tirunelveli.<br>${ }^{3}$ Assistant Professor, Jai Shriram Engineering College, Avinashipalayam, Tamil Nadu.


#### Abstract

Many real-world problems are represented using Graph theory. Graphs are the models of relations. A graph is an appropriate way of representing information involving relationship between objects where the objects are represented by vertices and the relations are represented by edges. We need to design a fuzzy graph model, when there is vagueness in the description of the objects or in its relationships or in both. In this paper, we introduced perfect Second-degree Fuzzy matching for Fuzzy graph based on vertices. We proved the necessary condition under which they are equivalent and also proved that, for a particular condition, a perfect Second-degree Fuzzy matching is not a ( $\mathbf{2}, \mathbf{k}$ ) regular Fuzzy graph. We also discussed perfect Second-degree Fuzzy matching and Second-degree Fuzzy matching number for cycle graph.


Keywords: Fuzzy graph, Second-degree Fuzzy matching, perfect Second-degree Fuzzy matching, Second-degree Fuzzy matching number

## 1. Introduction

The concept of Fuzzy sets and Fuzzy relations was introduced by L. A.Zadeh [8] in the year 1965. The concept of Fuzzy graph was introduced by Rosenfeld[4] in the year 1975. The concept of regular Fuzzy graphs and regular property ofFuzzy graphs was introduced by Nagoor Gani and Radha[2][3]. New approach on vertex regular Fuzzy graph was introduced by Kailash Kumar Kakkad and Sanjay Sharma[1]. Shakila Banu and Akilandeswari[7] introduced the concept of square perfect Fuzzy matching. Seethalakshmi and Gnanajothi[5] derived the necessary condition for a Fuzzy graph on a cycle. The concept of $\mathrm{d}_{2}$-degree and total $\mathrm{d}_{2}$-degree of a vertex in a Fuzzy graph was defined by Sekar and Santhimaheswari[6].

## 2. Preliminaries

## Definition2.1:

A fuzzy graph denoted by $\mathrm{G}:(\sigma, \mu)$ on $\mathrm{G}^{*}:(\mathrm{V}, \mathrm{E})$ is a pair of functions $(\sigma, \mu)$ where $\sigma: V \rightarrow[0,1]$ is a fuzzy subset of a non-empty set $V$ and $\mu: V \mathrm{XV} \rightarrow[0,1]$ is a symmetric fuzzy relation on $\sigma$ such that for all $u, v$ in $V$ the relation $\mu(u, v)=\mu(u v) \leq \sigma(u) \wedge \sigma(v)$ is satisfies, where $\sigma$ and $\mu$ are called membership functions. A fuzzy graph $G$ is complete if $\mu(u, v)=\mu(u v)=\sigma(u) \wedge \sigma(v)$

Catalyst Research
Volume 23, Issue 2, November 2023
Pp. 4991-5001
where uv denotes the edge between $u$ and $v . G^{*}:(V, E)$ is called the underlying crisp graph of the fuzzy graph G: $(\sigma, \mu)$.

## Definition2.2:

Let $G:(\sigma, \mu)$ be a fuzzy graph. The degree of a vertex $u$ is

$$
\mathrm{d}(\mathrm{u})=\sum_{\mathrm{u} \neq \mathrm{v}} \mu(\mathrm{uv})
$$

since $\mu(u v)>0$ foruv $\in E$ and $\mu(u v)=0$ for $u v \notin E$.
The minimum degree of G is $\delta(\mathrm{G})=\wedge\{\mathrm{d}(\mathrm{u}) / \mathrm{u} \in \mathrm{V}\}$.
The maximum degree of G is $\Delta(\mathrm{G})=\mathrm{V}\{\mathrm{d}(\mathrm{u}) / \mathrm{u} \in \mathrm{V}\}$.

## Definition2.3:

For a given graph $G$, the $d_{2}$ degree of a vertexu in $G$ denoted by $d_{2}(u)$ means the number of vertices at a distance 2 away from $u$.

## Definition2.4:

For a given fuzzy graph $G$, the $d_{2}$ degree of a Vertex $u$ is

$$
\mathrm{d}_{2}(\mathrm{u})=\sum_{\substack{\mathrm{u} \neq \mathrm{v} \\ u, v \in \mathrm{~V}}} \mu^{2}(\mathrm{uv})
$$

where,
$\mu^{2}(\mathrm{uv})=\left\{\mu\left(\mathrm{uv}_{1}\right) \wedge \mu\left(\mathrm{v}_{1}, \mathrm{v}\right)\right\}$.
Also $\mu(u v)=0$ for $u v \notin E$.
The minimum $d_{2}$ degree of $G$ is $\delta_{2}(G)=\wedge\left\{d_{2}(u) / u \in V\right\}$.
The maximum $\mathrm{d}_{2}$ degree of G is $\Delta_{2}(\mathrm{G})=\mathrm{V}\left\{\mathrm{d}_{2}(\mathrm{u}) / \mathrm{u} \in \mathrm{V}\right\}$.
Definition2.5:
A fuzzy graph $G$ is said to be $(2, k)$ regular or $d_{2}$ regular if $d_{2}(u)=k f o r$ all $u$ in $G$.

## 3. Perfect Second-degree Fuzzy Matching

## Definition 3.1:

Let $G:(\sigma, \mu)$ be a fuzzy graph on $G^{*}$ : $(V, E)$. A subset $S$ of $V$ is called a Second-degree fuzzy matching if for each vertex $u$ we have,

$$
\sum_{\substack{u \neq v \\ u, v \in V}} \mu^{2}(u v) \leq \sigma(u)
$$

Example 3.1

## China Petroleum Processing and Petrochemical Technology

Catalyst Research
Volume 23, Issue 2, November 2023
Pp. 4991-5001
Let G: $(\sigma, \mu)$ be a fuzzy graph on the cycleG*: (V,E) where $V=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$ and $E=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}\right\}$ with $e_{1}=v_{1} v_{2}, e_{2}=v_{2} v_{3}, e_{3}=v_{3} v_{4}, e_{4}=v_{4} v_{5}, e_{5}=v_{5} v_{6}, e_{6}=$ $\mathrm{V}_{6} \mathrm{~V}_{1}$
$\sigma\left(\mathrm{v}_{1}\right)=0.4, \sigma\left(\mathrm{v}_{2}\right)=0.3, \sigma\left(\mathrm{v}_{3}\right)=0.5, \sigma\left(\mathrm{v}_{4}\right)=0.8, \sigma\left(\mathrm{v}_{5}\right)=0.2, \sigma\left(\mathrm{v}_{6}\right)=0.5$
$\mu\left(\mathrm{e}_{1}\right)=0.2, \mu\left(\mathrm{e}_{2}\right)=0.3, \mu\left(\mathrm{e}_{3}\right)=0.4, \mu\left(\mathrm{e}_{4}\right)=0.2, \mu\left(\mathrm{e}_{5}\right)=0.1, \mu\left(\mathrm{e}_{6}\right)=0.35$


Figure 1: second-degree fuzzy matching

$$
\begin{aligned}
& \sum_{\substack{\mathrm{v}_{1} \neq \mathrm{v}_{3} \\
\mathrm{v}_{1}, \mathrm{v}_{3} \in \mathrm{~V}}} \mu^{2}\left(\mathrm{v}_{1} \mathrm{v}_{3}\right)=\mu^{2}\left(\mathrm{v}_{1} \mathrm{v}_{3}\right)+\mu^{2}\left(\mathrm{v}_{1} \mathrm{v}_{5}\right) \\
= & \left\{\mu\left(\mathrm{v}_{1} \mathrm{v}_{2}\right) \wedge \mu\left(\mathrm{v}_{2} \mathrm{v}_{3}\right)\right\}+\left\{\mu\left(\mathrm{v}_{1} \mathrm{v}_{6}\right) \wedge \mu\left(\mathrm{v}_{6} \mathrm{v}_{5}\right)\right\} \\
= & \{0.2 \wedge 0.3\}+\{0.35 \wedge 0.1\} \\
= & 0.2+0.1 \\
= & 0.3 \leq \sigma\left(\mathrm{v}_{1}\right)
\end{aligned}
$$

$$
\sum_{\substack{\mathrm{v}_{2} \neq \mathrm{v}_{4} \\ \mathrm{v}_{2}, \mathrm{v}_{4} \in \mathrm{~V}}} \mu^{2}\left(\mathrm{v}_{2} \mathrm{v}_{4}\right)=0.3+0.2=0.5 \$ \sigma\left(\mathrm{v}_{2}\right)
$$

$$
\sum_{\substack{\mathrm{v}_{3} \neq \mathbf{v}_{5} \\ \mathrm{v}_{3}, \mathrm{v}_{5} \in \mathrm{~V}}} \mu^{2}\left(\mathrm{v}_{3} \mathrm{v}_{5}\right)=0.2+0.2=0.4 \leq \sigma\left(\mathrm{v}_{3}\right)
$$

$$
\sum_{\substack{\mathrm{v}_{4} \neq \mathrm{v}_{6} \\ \mathrm{v}_{4}, \mathrm{v}_{6} \in \mathrm{~V}}} \mu^{2}\left(\mathrm{v}_{4} \mathrm{v}_{6}\right)=0.1+0.3=0.4 \leq \sigma\left(\mathrm{v}_{4}\right)
$$

$$
\sum_{\substack{v_{5} \neq v_{1} \\ v_{5}, v_{1} \in V}} \mu^{2}\left(v_{5} v_{1}\right)=0.1+0.2=0.3 \nsubseteq \sigma\left(v_{5}\right)
$$

$$
\sum_{\substack{v_{6} \neq v_{2} \\ v_{6}, v_{2} \in V}} \mu^{2}\left(v_{6} v_{2}\right)=0.2+0.1=0.3 \leq \sigma\left(v_{6}\right)
$$

Catalyst Research
Volume 23, Issue 2, November 2023
Thus $S=\left\{v_{1}, v_{3}, v_{4}, v_{6}\right\}$ is a Second-degree Fuzzy matching in $G$.

## Definition 3.2:

A Second-degree Fuzzy matching $S$ is called a Perfect Second-degree fuzzy matching if,

$$
\sum_{\substack{u \neq v \\ u, v \in V}} \mu^{2}(u v)=\sigma(u)
$$

## Definition 3.3:

Let $G:(\sigma, \mu)$ be a Fuzzy graph and $S$ be a Second-degree fuzzy matching. Then Second-degree fuzzy matching number $\Gamma(G)$ is defined to be $\Gamma(G)=\sum_{u \in S} \mu^{2}(u v)$
Example 3.2
In this examplewe have considered Figure 1 and Example 3.1.
$\Gamma(G)=\sum_{u \in S} \mu^{2}(u v)$
where $S=\left\{v_{1}, v_{3}, v_{4}, v_{6}\right\}$

$$
\begin{aligned}
\Gamma(G) & =\mu^{2}\left(v_{1} v_{3}\right)+\mu^{2}\left(v_{3} v_{5}\right)+\mu^{2}\left(v_{4} v_{6}\right)+\mu^{2}\left(v_{6} v_{2}\right) \\
& =0.3+0.4+0.4+0.3=1.4
\end{aligned}
$$

## Theorem3.1:

Let $G:(\sigma, \mu)$ be a Fuzzy graph on the cycle $G^{*}:(V, E)$. Then edges of the Fuzzy graph of $G$ is half of their vertices iff, all the vertices of $G$ are perfect Second-degree Fuzzy matching and is equivalent to $(2, k)$ is regular fuzzy graph

Proof:
Suppose that $\sigma$ is a constant function.
Let $\sigma(u)=k$ is a constant for all $u \in V$ and $(u v)=\frac{k}{2}$, for all $(u v) \epsilon E$
Assume that $G$ is a $(2, k)$ regular Fuzzy graph on the cycle $G^{*}:(V, E)$.
Then $d_{2}(u)=k$
By definition of $d_{2}$ degree of a vertex in Fuzzy graph

$$
d_{2}(u)=\sum_{\substack{u \neq v \\ u, v \in V}} \mu^{2}(u v)
$$

That is,

Catalyst Research

$$
\frac{\text { Volume 23, Issue 2, November } 2023}{\sum_{\substack{u \neq v \\ u, v \in V}} \mu^{2}(u v)=k}
$$

Pp. 4991-5001

Since $G$ is a $(2, k)$ regular Fuzzy graph

$$
\Rightarrow \sum_{\substack{u \neq v \\ u, v \in V}} \mu^{2}(u v)=\sigma(\mu)
$$

Therefore Each vertex of $u$ satisfies the Perfect second-degree Fuzzy matching in $G$.
Now suppose that $V$ is a perfect second-degree Fuzzy matching in $G$.
Since $G$ is a Fuzzy graph on the cycle and only two edges are incident with each vertex for cycles.
For any vertex $u \in V$

$$
\Rightarrow \sum_{\substack{u \neq v \\ u, v \in V}} \mu^{2}(u v)=\sigma(u)
$$

By definition,

$$
\begin{aligned}
d_{2}(u) & =\sum_{\substack{u \neq v \\
u, v \in V}} \mu^{2}(u v) \\
& \Rightarrow d_{2}(u)=\sigma(u) \\
& \Rightarrow d_{2}(u)=k
\end{aligned}
$$

Hence $G$ is $(2, k)$ regular Fuzzy graph on the cycle.
The converse of the theorem is trivially true.
Example 3.3

## China Petroleum Processing and Petrochemical Technology



Figure 2:(2,0.6)- regular fuzzy graph
Let $G:(\sigma, \mu)$ be a Fuzzy graph on the cycle $G^{*}:(V, E)$ where $V=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$ and $E=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}\right\}$ with $e_{1}=v_{1} v_{2}, e_{2}=v_{2} v_{3}, e_{3}=v_{3} v_{4}, e_{4}=v_{4} v_{5}$,
$e_{5}=v_{5} v_{6}, e_{6}=v_{6} v_{1}$
$\sigma\left(v_{1}\right)=0.6, \sigma\left(v_{2}\right)=0.6, \sigma\left(v_{3}\right)=0.6, \sigma\left(v_{4}\right)=0.6, \sigma\left(v_{5}\right)=0.6, \sigma\left(v_{6}\right)=0.6$
$\mu\left(e_{1}\right)=0.3, \mu\left(e_{2}\right)=0.3, \mu\left(e_{3}\right)=0.3, \mu\left(e_{4}\right)=0.3, \mu\left(e_{5}\right)=0.3, \mu\left(e_{6}\right)=0.3$
$\sum_{\substack{v_{1} \neq v_{3} \\ v_{1}, v_{3} \in V}} \mu^{2}\left(v_{1} v_{3}\right)=\mu^{2}\left(v_{1} v_{3}\right)+\mu^{2}\left(v_{1} v_{5}\right)$
$=\left\{\mu\left(v_{1} v_{2}\right) \wedge \mu\left(v_{2} v_{3}\right)\right\}+\left\{\mu\left(v_{1} v_{6}\right) \wedge \mu\left(v_{6} v_{5}\right)\right\}$
$=\{0.2 \wedge 0.2\}+\{0.2 \wedge 0.2\}$
$=0.3+0.3$
$=0.6=\sigma\left(v_{1}\right)$
Similarly,

$$
\sum_{\substack{v_{2} \neq v_{4} \\ v_{2}, v_{4} \in V}} \mu^{2}\left(v_{2} v_{4}\right)=0.3+0.3=0.6=\sigma\left(v_{2}\right)
$$

$\sum_{\substack{v_{3} \neq v_{5} \\ v_{3}, v_{5} \in V}} \mu^{2}\left(v_{3} v_{5}\right)=0.3+0.3=0.6=\sigma\left(v_{3}\right)$
Catalyst Research
Volume 23, Issue 2, November 2023

$$
\sum_{\substack{v_{4} \neq v_{6} \\ v_{4}, v_{6} \in V}} \mu^{2}\left(v_{4} v_{6}\right)=0.3+0.3=0.6=\sigma\left(v_{4}\right)
$$

$$
\sum_{\substack{v_{5} \neq v_{1} \\ v_{5}, v_{1} \in V}} \mu^{2}\left(v_{5} v_{1}\right)=0.3+0.3=0.6=\sigma\left(v_{5}\right)
$$

$$
\sum_{\substack{v_{6} \neq v_{2} \\ v_{6}, v_{2} \in V}} \mu^{2}\left(v_{6} v_{2}\right)=0.3+0.3=0.6=\sigma\left(v_{6}\right)
$$

Hence $G$ is a perfectSecond-degree Fuzzy matching and also $(2,0.6)$ regular Fuzzy graph.

## Theorem3.2:

Let $G:(\sigma, \mu)$ be a $(2, k)$ regular Fuzzy graph on the cycle $G^{*}:(V, E) . \sigma(u)$ and $\mu(u v)$ are constant functions where $\mu(u v) \leq \sigma(u)$ and $\mu(u v) \neq \frac{1}{2} \sigma(u)$ for all $(u v) \in E$ then $V$ is not a perfect Second-degree Fuzzy matching of $G$.

Proof:
Let $\sigma(u)=\mathrm{k}$ and $\mu(u v)=c$ are constant functions for all $u, v \in V$ where $c \leq k$ and $c \neq k / 2$
To prove $V$ is not a perfect Second-degree Fuzzy matching of $G$.
Suppose that $G$ is a Fuzzy graph on the cycle and only two edges are incident with each vertex for the cycles.

For any vertex $u \in V$

$$
\begin{aligned}
\Rightarrow \sum_{\substack{u \neq w \\
u, w \in V}} \mu^{2}(u w) & =\mu^{2}(u w)+\mu^{2}(u v) \\
= & c+c \\
= & 2 c \leq k
\end{aligned}
$$

$=c \leq k / 2$ but $c \neq k / 2$

$$
\begin{gathered}
=c<k / 2 \\
\Rightarrow \sum_{\substack{u \neq w \\
u, w \in V}} \mu^{2}(u w) \neq k \\
\Rightarrow \sum_{\substack{u \neq w \\
u, w \in V}} \mu^{2}(u w) \neq \sigma(u)
\end{gathered}
$$

## China Petroleum Processing and Petrochemical Technology

Catalyst Research
Volume 23, Issue 2, November 2023
Pp. 4991-5001
Hence $V$ is not a perfect Second-degree Fuzzy matching of $G$.
Example 3.4
Let $G:(\sigma, \mu)$ be a Fuzzy graph on the cycle $G^{*}:(V, E)$ where $V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and $E=$ $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ with $e_{1}=v_{1} v_{2}, e_{2}=v_{2} v_{3}, e_{3}=v_{3} v_{4}, e_{4}=v_{4} v_{1}$
$\sigma\left(v_{1}\right)=0.6, \sigma\left(v_{2}\right)=0.6, \sigma\left(v_{3}\right)=0.6, \sigma\left(v_{4}\right)=0.6$
$\mu\left(e_{1}\right)=0.2, \mu\left(e_{2}\right)=0.2, \mu\left(e_{3}\right)=0.2, \mu\left(e_{4}\right)=0.2$


Figure 3: Not a perfect Second-degree fuzzy matching

$$
\begin{aligned}
& \substack{\text { For } \\
\sum_{\begin{subarray}{c}{u \neq v \\
u, v \in V} }}^{\substack{\text { any }}} \mu(u v)=\sigma(u)} \\
{\sum_{\substack{v_{1} \neq v_{2} \\
v_{1}, v_{2} \in V}} \mu\left(\mathrm{v}_{1} \mathrm{v}_{2}\right)=0.2+0.2=0.4 \neq \sigma\left(\mathrm{v}_{1}\right)} \\
{\sum_{\substack{\mathrm{v}_{2} \neq \mathrm{v}_{3} \\
\mathrm{v}_{2}, \mathrm{v}_{3} \in \mathrm{~V}}} \mu\left(\mathrm{v}_{2} \mathrm{v}_{3}\right)=0.2+0.2=0.4 \neq \sigma\left(\mathrm{v}_{2}\right)} \\
{\sum_{\substack{\mathrm{v}_{3} \neq \mathrm{v}_{4} \\
\mathrm{v}_{3}, \mathrm{v}_{4} \in \mathrm{~V}}} \mu\left(\mathrm{v}_{3} \mathrm{v}_{4}\right)=0.2+0.2=0.4 \neq \sigma\left(\mathrm{v}_{3}\right)} \\
{\sum_{\substack{\mathrm{v}_{4} \neq \mathrm{v}_{1} \\
\mathrm{v}_{4}, \mathrm{v}_{1} \in \mathrm{~V}}} \mu\left(\mathrm{v}_{4} \mathrm{v}_{1}\right)=0.2+0.2=0.4 \neq \sigma\left(\mathrm{v}_{4}\right)} \\
{\hline}
\end{aligned}
$$

Hence G is not a Perfect Second-degree Fuzzy matching.
Theorem3.3:

Let $G$ be a Perfect Second-degree Fuzzy matching on the cycle $G^{*}:(V, E)$ of length $n \geq 5$. If

$$
\sigma\left(\mathrm{u}_{\mathrm{i}}\right)=\left\{\begin{array}{c}
\mathrm{k} / 4, \mathrm{i}=1,2, \mathrm{n}-1, \mathrm{n} \\
\mathrm{k} / 3, \mathrm{i}=3,4, \ldots \mathrm{n}-2 \\
\text { for all } \mathrm{u} \in \mathrm{~V}
\end{array}\right.
$$

and

$$
\mu\left(\mathrm{e}_{\mathrm{i}}\right)=\left\{\begin{array}{l}
\mathrm{k} / 6, \mathrm{i}=1,2,3,4, \ldots \mathrm{n}-1 \\
\mathrm{k} / 12, \mathrm{i}=\mathrm{n} \\
\text { for all(uv) } \in \mathrm{E}
\end{array}\right.
$$

Then G is not $(2, \mathrm{k})$ regular Fuzzy graph.
Proof:
Let $\mathrm{G}:(\sigma, \mathrm{u})$ be a Perfect Second-degree Fuzzy matching on the Cycle $\mathrm{G}^{*}:(\mathrm{V}, \mathrm{E})$ is any length $\geq 5$.

To prove that G is not $\mathrm{a}(2, \mathrm{k})$ regular Fuzzy graph.
Let $v_{1}, v_{2}, v_{3}, \ldots \ldots v_{n}$ be the vertices and $e_{1}, e_{2}, \ldots \ldots e_{n}$ be edges of a cycle onG* in that order. By definition,

$$
\begin{aligned}
& d_{2}(u)=\sum_{\substack{u \neq v \\
u, v \in V}} \mu^{2}(u v) \\
& \mathrm{d}_{2}\left(\mathrm{v}_{1}\right)=\sum_{\substack{\mathrm{v}_{1} \neq \mathrm{v}_{3} \\
\mathrm{v}_{1}, \mathrm{v}_{3} \in \mathrm{~V}}} \mu^{2}\left(\mathrm{v}_{1} \mathrm{v}_{3}\right) \\
& =\mu^{2}\left(v_{1} v_{3}\right)+\mu^{2}\left(v_{1} v_{n-1}\right) \\
& =\left\{\mu\left(\mathrm{v}_{1} \mathrm{v}_{2}\right) \wedge \mu\left(\mathrm{v}_{2} \mathrm{v}_{3}\right)\right\}+\left\{\mu\left(\mathrm{v}_{1} \mathrm{v}_{\mathrm{n}}\right) \wedge \mu\left(\mathrm{v}_{\mathrm{n}} \mathrm{v}_{\mathrm{n}-1}\right)\right\} \\
& =\left\{\mu\left(\mathrm{e}_{1}\right) \wedge \mu\left(\mathrm{e}_{2}\right)\right\}+\left\{\mu\left(\mathrm{e}_{\mathrm{n}}\right) \wedge \mu\left(\mathrm{e}_{\mathrm{n}-1}\right)\right\} \\
& =\{\mathrm{k} / 6 \wedge \mathrm{k} / 6\}+\{\mathrm{k} / 12 \wedge \mathrm{k} / 6\} \\
& =\mathrm{k} / 6_{6}+\mathrm{k} / 12=\mathrm{k} / 4=\sigma\left(\mathrm{v}_{1}\right) \\
& \mathrm{d}_{2}\left(\mathrm{v}_{2}\right)=\left\{\mu\left(\mathrm{e}_{2}\right) \wedge \mu\left(\mathrm{e}_{3}\right)\right\}+\left\{\mu\left(\mathrm{e}_{1}\right) \wedge \mu\left(\mathrm{e}_{\mathrm{n}}\right)\right\} \\
& =\{\mathrm{k} / 6 \wedge \mathrm{k} / 6\}+\{\mathrm{k} / 6, \wedge \mathrm{k} / 12\} \\
& =\mathrm{k} / 6+\mathrm{k} / 12=\mathrm{k} / 4=\sigma\left(\mathrm{v}_{2}\right) \\
& \mathrm{d}\left(\mathrm{v}_{3}\right)=\left\{\mu\left(\mathrm{e}_{3}\right) \wedge \mu\left(\mathrm{e}_{4}\right)\right\}+\left\{\mu\left(\mathrm{e}_{2}\right) \wedge \mu\left(\mathrm{e}_{1}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\{\mathrm{k} / 6 \wedge \mathrm{k} / 6\}+\left\{\mathrm{k} /{ }_{6} \wedge \mathrm{k} / 6\right\} \\
& =\mathrm{k} / 6+\mathrm{k} / 6=\mathrm{k} / 3=\sigma\left(\mathrm{v}_{3}\right) \\
& \text { - - - - } \\
& \mathrm{d}_{2}\left(\mathrm{v}_{\mathrm{i}}\right)=\left\{\mu\left(\mathrm{e}_{\mathrm{i}}\right) \wedge \mu\left(\mathrm{e}_{\mathrm{i}+1}\right)\right\}+\left\{\mu\left(\mathrm{e}_{\mathrm{i}-1}\right) \wedge \mu\left(\mathrm{e}_{\mathrm{i}-2}\right)\right\} \\
& =\mathrm{k} / 6+\mathrm{k} / 6=\mathrm{k} / 3=\sigma\left(\mathrm{v}_{\mathrm{i}}\right) \\
& \text { h } \\
& \mathrm{d}_{2}\left(\mathrm{v}_{\mathrm{n}-1}\right)=\left\{\mu\left(\mathrm{e}_{\mathrm{n}-1}\right) \wedge \mu\left(\mathrm{e}_{\mathrm{n}}\right)\right\}+\left\{\mu\left(\mathrm{e}_{\mathrm{n}-2}\right) \wedge \mu\left(\mathrm{e}_{\mathrm{n}-3}\right)\right\} \\
& =\{\mathrm{k} / 6 \wedge \mathrm{k} / 12\}+\{\mathrm{k} / 6, \wedge \mathrm{k} / 6\} \\
& =\mathrm{k} / 12+\mathrm{k} / 6=\mathrm{k} / 4=\sigma\left(\mathrm{v}_{\mathrm{n}-1}\right) \\
& \mathrm{d}_{2}\left(\mathrm{v}_{\mathrm{n}}\right)=\left\{\mu\left(\mathrm{e}_{\mathrm{n}-1}\right) \wedge \mu\left(\mathrm{e}_{\mathrm{n}}\right)\right\}+\left\{\mu\left(\mathrm{e}_{\mathrm{n}-2}\right) \wedge \mu\left(\mathrm{e}_{\mathrm{n}-3}\right)\right\} \\
& =\{\mathrm{k} / 6 \wedge \mathrm{k} / 12\}+\{\mathrm{k} / 6 \wedge \mathrm{k} / 6\}=\mathrm{k} / 12+\mathrm{k} / 6=\mathrm{k} / 4=\sigma\left(\mathrm{v}_{\mathrm{n}}\right)
\end{aligned}
$$

Hence G is not $\mathrm{a}(2, \mathrm{k})$ regular Fuzzy graph

## Conclusion

In this paper, we have introduced perfect Second-degree Fuzzy matching for Fuzzy graph based on vertices on the cycle. We proved the necessary condition under which they are equivalent and also proved that, for a particular condition, a perfect Second-degree Fuzzy matching is not a $(\mathbf{2}, \mathbf{k})$ regular Fuzzy graph. We also discussed perfect Second-degree Fuzzy matching and Second-degree Fuzzy matching number for cycle graph. For the future work we can extend to complete graph regular graph and finally for any connected graph.

## References

1. Kailash Kumar Kakkad and Sanjay Sharma, New approach on Regular Fuzzy graph, Global Journal of Pure and Applied Mathematics, Volume 13, 2017, 3753 - 3766
2. NagoorGani A. and Radha K., On Regular Fuzzy graphs, Journal of Physical Science, Volume 12,2008, 33-40
3. NagoorGani A. and Radha K., Regular property of Fuzzy graphs, Bulletin of Pure and Applied Sciences, Volume 27E (No.2), 2008, 415 - 423
4. Rosenfeld A.,L. A. Zadek, K. S. Fu and M. Shimura, Fuzzy Graphs, Fuzzy Sets and their Applications, Academic Press, 1975, 77-95
5. Seethalakshmi R. and Gnanajothi R. B., A note on Perfect Fuzzy matching International Journal of Pure and Applied Mathematics Volume 94(2), 2014, 155-161
6. Sekar C. and SanthiMaheswari R., On ( $2, \mathrm{k}$ ) - regular and totally ( $2, \mathrm{k}$ ) regular Fuzzy graphs, International Journal of Mathematics and Soft computing, Volume 4, No. 2, 2014, 59 - 69
7. Shakila Banu P. and Akilandeswari R., Square Perfect Fuzzy matching, Inter J. Fuzzy Mathematical Archive 11(1), 2016, 45 - 52
8. Zadeh L. A., Fuzzy Sets*, Informationand control, 8, 1965, 338 - 353
