Intuitionistic Fuzzy $\hat{\boldsymbol{g}}^{*}$ Semi Open Mappings in Intuitionistic
Fuzzy Topological Spaces
A. Peter Arokiaraj ${ }^{1 *}$, J. Martina Jency ${ }^{2}$, S. Pious Missier ${ }^{3}$
${ }^{1 *}$ Research Scholar (Reg.No-19222232091032), PG and Research Department of Mathematics, V.O.Chidambaram College, (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012), Thoothukudi-628 008, Tamil Nadu, India.
${ }^{2}$ Assistant Professor, PG and Research Department of Mathematics, V.O.Chidambaram College, (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012), Thoothukudi-628 008, Tamil Nadu, India.
${ }^{3}$ Head \& Associate Professor (Rtd.), Department of Mathematics, Don Bosco College of Arts and Science, (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012) Keela Eral, Thoothukudi-628 908, Tamil Nadu, India.
${ }^{1}$ petrajsdb@gmail.com ${ }^{2}$ martinajency@gmail.com ${ }^{3}$ spmissier@gmail.com

Abstract

This article is intended to launch another breakthrough in Intuitionistic Fuzzy $\widehat{\boldsymbol{g}}^{*}$ Semi Closed sets namely Intuitionistic Fuzzy $\widehat{\boldsymbol{g}}^{*}$ Semi Open Mappings. We also poster some essential comparative notions with other closed mappings and engage into a deeper analysis of their characterizations.

$\underline{\text { Key Words: }}$ Intuitionistic Fuzzy $\widehat{\boldsymbol{g}}^{*}$ Semi Open set $\left(\mathcal{J F} \widehat{\boldsymbol{g}}^{*} s \mathcal{O} \mathcal{S}\right)$, Intuitionistic Fuzzy $\widehat{\boldsymbol{g}}^{*}$ Semi Closed Mapping ($\left.\mathcal{J F} \widehat{\boldsymbol{g}}^{*} s \mathcal{C M}\right)$ and Intuitionistic Fuzzy \hat{g}^{*} Semi Open Mapping ($\left.\mathcal{J F} \widehat{\boldsymbol{g}}^{*} s \mathcal{O M}\right)$.

AMS Subject Classifications (2000): 54A40, 03F55

I. INTRODUCTION

Zadeh (1965)[15] with his invention of fuzzy sets began a new page in the history of Mathematics. Chang [2] made it a point to introduce fuzzy topology in 1967. Atanassov [1] led this to another level of generalization by his Intuitionistic Fuzzy Sets in 1986. Coker [3] constructed Intuitionistic Fuzzy Topological spaces. Intuitionistic fuzzy closed mapping was introduced and investigated by Gurcay et al. [6] in 1997. In 2000, Lee et al.[7] investigated the properties of open and closed mappings in intuitionistic fuzzy topological spaces. In recent past Pious Missier, Peter Arokiaraj and et.al [6] introduced Intuitionistic Fuzzy $\widehat{\mathcal{g}}^{*}$ Semi closed sets in Intuitionistic Fuzzy Topological Spaces. Here we proceed to present our findings on Intuitionistic Fuzzy $\hat{\boldsymbol{g}}^{*}$ Semi Open Mappings in Intuitionistic Fuzzy Topological Spaces.

II. PRELIMINARIES

Definition 2.1. [1] Let \mathbb{U} be a universal set. Then $\mathfrak{M}_{\mathfrak{i f}}=\left\{\left\langle\mathbb{u}, \mu_{\mathfrak{M}_{\mathrm{if}}}(\mathbb{n})\right.\right.$, $\left.\left.v_{\mathfrak{M}_{\mathrm{if}}}(\mathbb{n})\right\rangle: \mathbb{u} \in \mathbb{U}\right\}$ is called as an intuitionistic fuzzy subset ($\mathcal{J F S}$ in short) in \mathbb{U}. Here the functions $\mu_{\mathfrak{M}_{\mathrm{if}}}: \mathbb{U} \rightarrow[0,1]$ and $v_{\mathfrak{M}_{\mathrm{if}}}: \mathbb{U} \rightarrow[0,1]$ denote the degree of membership (namely $\mu_{\mathfrak{M}_{\mathrm{if}}}(\mathbb{a})$) and the degree of non-membership (namely $v_{\mathfrak{M}_{\text {if }}}(\mathbb{\pi})$) of each element $\mathbb{\sim} \in \mathbb{U}$ to the set $\mathfrak{M}_{\text {if }}$ respectively and $0 \leq \mu_{\mathfrak{M}_{\mathrm{if}}}(\mathbb{u})+v_{\mathfrak{M}_{\mathrm{if}}}(\mathbb{\pi}) \leq 1$ for each $\mathbb{u} \in \mathbb{U}$. The set of all $\mathcal{J F S} s$ in \mathbb{U} is denoted by $\mathcal{J F} \mathcal{S}(\mathbb{U})$. For any two $\mathcal{J F S} s \mathfrak{M}_{\text {if }}$ and $\mathfrak{N}_{\text {if }}$, $\left(\mathfrak{M}_{\mathrm{if}} \cup \mathfrak{N}_{\mathrm{if}}\right)^{\mathrm{C}}=\mathfrak{M}_{\mathrm{if}}{ }^{\mathrm{C}} \cap \mathfrak{N}_{\mathrm{if}}{ }^{\mathrm{C}} ;\left(\mathfrak{M}_{\mathrm{if}} \cap \mathfrak{N}_{\mathrm{if}}\right)^{\mathrm{C}}=\mathfrak{M}_{\mathrm{if}}{ }^{\mathrm{C}} \cup \mathfrak{N}_{\mathrm{if}}{ }^{\mathrm{C}}$.
 two $\mathcal{J F} \mathcal{S s}(\mathbb{U})$, then
(a) $\mathfrak{M}_{\text {if }} \subseteq \mathfrak{M}_{\text {if }}$ if and only if $\mu_{\mathfrak{M}_{\text {if }}}$ (u) $\leq \mu_{\mathfrak{N}_{\text {if }}}$ (ur) and $v_{\mathfrak{M}_{\text {if }}}$ (un) $\geq v_{\mathfrak{N}_{\text {if }}}$ (un) for all un $\in \mathbb{U}$,
(b) $\mathfrak{M}_{\mathrm{if}}=\mathfrak{N}_{\mathrm{if}}$ if and only if $\mathfrak{M}_{\mathrm{if}} \subseteq \mathfrak{N}_{\mathrm{if}}$ and $\mathfrak{M}_{\mathrm{if}} \supseteq \mathfrak{N}_{\mathrm{if}}$,
(c) $\mathfrak{M}_{\mathrm{if}}^{\mathrm{C}}=\left\{\left\langle\mathfrak{u n}, \mathrm{v}_{\mathfrak{M}_{\mathrm{if}}}(\mathbb{u n}), \mu_{\mathfrak{M}_{\mathrm{if}}}(\mathbb{u n})\right\rangle:\right.$ un $\left.\in \mathbb{U}\right\}$ (complement of $\mathfrak{M}_{\mathrm{if}}$),
(d) $\mathfrak{M}_{\mathrm{if}} \cup \mathfrak{N}_{\mathrm{if}}=\left\{\left\langle\right.\right.$ un, $\left.\mu_{\mathfrak{M}_{\mathrm{if}}}(\mathrm{ur}) \vee \mu_{\mathfrak{N}_{\mathrm{if}}}(\mathrm{un}), v_{\mathfrak{M}_{\mathrm{if}}}(\mathrm{un}) \wedge \cup_{\mathfrak{N}_{\mathrm{if}}}(\mathrm{un})\right\rangle:$ un $\left.\in \mathbb{U}\right\}$,
(e) $\mathfrak{M}_{\text {if }} \cap \mathfrak{N}_{\text {if }}=\left\{\left\langle\right.\right.$ u, $\mu_{\mathfrak{M}_{\text {if }}}($ un $) \wedge \mu_{\mathfrak{N}_{\text {if }}}($ un $), v_{\mathfrak{M}_{\text {if }}}(\mathbb{u}) \vee v_{\mathfrak{N}_{\text {if }}}($ un $\left.)\right\rangle:$ un $\left.\in \mathbb{U}\right\}$,
(f) $\left(\mathfrak{M}_{\mathrm{if}} \cup \mathfrak{N}_{\mathrm{if}}\right)^{\mathrm{C}}=\mathfrak{M}_{\mathrm{if}}{ }^{\mathrm{C}} \cap \mathfrak{N}_{\mathrm{if}}{ }^{\mathrm{C}}$ and $\left(\mathfrak{M}_{\mathrm{if}} \cap \mathfrak{N}_{\mathrm{if}}\right)^{\mathrm{C}}=\mathfrak{M}_{\mathrm{if}}^{\mathrm{C}} \cup \mathfrak{N}_{\mathrm{if}}{ }^{\mathrm{C}}$.
(h) $\tilde{\mathbf{0}}=\langle$ un, 0,1\rangle (empty set) and $\tilde{\mathbf{1}}=\langle$ un, 1,0\rangle (whole set).

Definition 2.3: [3] An intuitionistic fuzzy topology $(\mathcal{J F T})$ on \mathbb{U} is a family of $\mathcal{J F} \mathcal{S} s$ in \mathbb{U}, satisfying the following axioms.

1. $\tilde{0}, \tilde{1} \in \tau_{\text {if }}$
2. $\mathfrak{M}_{\mathrm{if}} \cap \mathfrak{M}_{\mathrm{if}} \in \tau_{\mathrm{if}}$ for any $\mathfrak{M}_{\mathrm{if}}, \mathfrak{N}_{\mathrm{if}} \in \tau_{\mathrm{if}}$
3. $\cup \mathfrak{M}_{\mathrm{if}_{i}} \in \tau_{\mathrm{if}}$ for any family $\left\{\mathfrak{M}_{\mathrm{if}_{i}} / i \in \mathcal{J}\right\} \subseteq \tau_{\mathrm{if}}$.

The pair $\left(\mathbb{U}, \tau_{\text {if }}\right)$ is called an intuitionistic fuzzy topological space $(\mathcal{J F T} \mathcal{S})$ and any $\mathcal{J F} \mathcal{S}$ in $\tau_{\text {if }}$ is known as an intuitionistic fuzzy open set $(\mathcal{J F} \mathcal{O} \mathcal{S})$ in \mathbb{U}. The complement $\left(\mathfrak{M}_{\mathrm{if}}{ }^{\mathrm{C}}\right.$) of an $\mathcal{J F} \mathcal{O} \mathcal{S} \mathfrak{M}_{\mathrm{if}}$ in an $\mathcal{J F T} \mathcal{S}\left(\mathbb{U}, \tau_{\text {if }}\right)$ is called an intuitionistic fuzzy closed $\operatorname{set}(\mathcal{J F C} \mathcal{S}$ in short) in \mathbb{U}. In this paper, $\mathcal{J F}$ interior is denoted by $i n t_{\mathrm{if}}$ and $\mathcal{J F}$ closure is denoted by $c l_{\mathrm{if} \uparrow}$.
 Then the interior and closure of the above $\mathcal{J F} \mathcal{S}$ are defined as follows:
(i) $\operatorname{int}_{\mathrm{if}}\left(\mathfrak{M}_{\mathrm{if}}\right)=\cup\left\{\mathcal{G}_{\text {if }} \mid \mathcal{G}_{\mathrm{if}}\right.$ is an $\mathcal{J F} \mathcal{O} \mathcal{S}$ in \mathbb{U} and $\left.\mathcal{G}_{\mathrm{if}} \subseteq \mathfrak{M}_{\mathrm{if}}\right\}$
(ii) $c l_{\mathrm{if}}\left(\mathfrak{M}_{\mathrm{if}}\right)=\cap\left\{\mathcal{K}_{\mathrm{if}} \mid \mathcal{K}_{\mathrm{if}}\right.$ is an $\mathcal{J F C S}$ in \mathbb{U} and $\left.\mathfrak{M}_{\mathrm{if}} \subseteq \mathcal{K}_{\mathrm{if}}\right\}$

Definition 2.5. [15] $\mathcal{J F} w$-closed set $\left(\mathcal{J F} w \mathcal{C} \mathcal{S}\right.$ in short) or $\mathcal{J F} \widehat{g}$-closed $\left(\mathcal{J F} \widehat{\mathcal{G} \mathcal{C}}\right.$ in short) if $c l_{\mathrm{if}}\left(\mathcal{A}_{\mathrm{if}}\right)$ $\subseteq \mathcal{O}$ whenever $\mathcal{A}_{\mathrm{if}} \subseteq \mathcal{O}_{\mathrm{if}}$ and $\mathcal{O}_{\mathrm{i} \ddagger}$ is $\mathcal{J F} \boldsymbol{\mathcal { O }}$.

Definition 2.6. [10] An $\mathcal{J F S} \mathfrak{M}_{\mathrm{if}}$ of an $\mathcal{J F T} \mathcal{S}\left(\mathbb{U}, \tau_{\mathrm{if}}\right)$ is called an $\mathcal{J F} \widehat{\mathcal{g}}^{*} s \mathcal{C}$, if $s c l_{\mathrm{if}}\left(\mathfrak{M}_{\mathrm{if}}\right) \subseteq \mathcal{O}_{\mathrm{if}}$ whenever $\mathfrak{M}_{\mathrm{if}} \subseteq \mathcal{O}_{\mathrm{if}}$ and $\mathcal{O}_{\mathrm{if}}$ is any $\mathcal{J F} \widehat{\mathcal{G}} \mathcal{O}$ in $\left(\mathbb{U}, \tau_{\mathrm{if}}\right)$.

Definition 2.7. [8] Let $f:\left(\mathbb{U}, \tau_{\text {if }}\right) \rightarrow\left(\mathbb{V}, \sigma_{\text {if }}\right)$ be a mapping. Then f is said to be $\mathcal{J F C M}$ if $f\left(\mathcal{N}_{\text {if }}\right)$ is $\mathcal{J F C S}$ in $\left(\mathbb{V}, \sigma_{\text {if }}\right)$ for every $\mathcal{J F C S} \mathcal{N}_{\mathrm{if}}$ in $\left(\mathbb{U}, \tau_{\mathrm{if}}\right)$.

Definition 2.8. Let $f:\left(\mathbb{U}, \tau_{\mathrm{if}}\right) \rightarrow\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$ be a mapping. Then f is said to be
(i) An $\mathcal{J F} s \mathcal{C M}[11]$ if $f\left(\mathcal{N}_{\text {if }}\right)$ is $\mathcal{J F} \mathcal{S C}$ in $\left(\mathbb{V}, \sigma_{\text {if }}\right)$ for every $\mathcal{J F C S} \mathcal{N}_{\text {if }}$ in $\left(\mathbb{U}, \tau_{\text {if }}\right)$.
(ii) An $\mathcal{J F} \alpha \mathcal{C M}$ [12] if $f\left(\mathcal{N}_{\text {if }}\right)$ is $\mathcal{J F} \alpha \mathcal{C}$ in $\left(\mathbb{V}, \sigma_{\text {if }}\right)$ for every $\mathcal{J F C S} \mathcal{N} \mathcal{N}_{\text {if }}$ in $\left(\mathbb{U}, \tau_{\text {if }}\right)$.
(iii) An $\mathcal{J F} \mathcal{g}^{*} \mathcal{C M}$ [9] if $f\left(\mathcal{N}_{\mathrm{if}}\right)$ is $\mathcal{J F} \mathcal{g}^{*} \mathcal{C}$ in $\left(\mathbb{V}, \sigma_{\text {if }}\right)$ for every $\mathcal{J F} \mathcal{C S} \mathcal{N}_{\text {if }}$ in $\left(\mathbb{U}, \tau_{\mathrm{if}}\right)$.
(iv) An $\mathcal{J F} w \mathcal{C N}$ [12] or $\mathcal{J F} \widehat{\mathcal{G} \mathcal{C N}}$ if $f\left(\mathcal{N}_{\mathrm{if}}\right)$ is $\mathcal{J F} \widehat{\mathcal{G} \mathcal{C}}$ in $\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$ for every $\mathcal{J F C S} \mathcal{N}_{\mathrm{if}}$ in $\left(\mathbb{U}, \tau_{\mathrm{if}}\right)$.
(v) An $\mathcal{J F} \mathcal{g}^{*} s \mathcal{C M}$ [9] if $f\left(\mathcal{N}_{\text {if }}\right)$ is $\mathcal{J F} g^{*} s \mathcal{C}$ in $\left(\mathbb{V}, \sigma_{\text {if }}\right)$ for every $\mathcal{J F C \mathcal { S }} \mathcal{N}_{\text {if }}$ in $\left(\mathbb{U}, \tau_{\text {if }}\right)$.
(vi) An $\mathcal{J F} \Psi \mathcal{C M}$ [8] if $f\left(\mathcal{N}_{\mathrm{if}}\right)$ is $\mathcal{J F} \Psi \mathcal{C}$ in $\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$ for every $\mathcal{J F C S} \mathcal{N}_{\mathrm{if}}$ in $\left(\mathbb{U}, \tau_{\mathrm{if}}\right)$.

III. INTUITIONISTIC FUZZY $\widehat{\boldsymbol{g}}^{*}$ SEMI OPEN MAPPING IN INTUITIONISTIC FUZZY TOPOLOGICAL SPACES

Definition 3.1. Let $f:\left(\mathbb{U}, \tau_{\text {if }}\right) \rightarrow\left(\mathbb{V}, \sigma_{\text {if }}\right)$ be a mapping. Then f is said to be $\mathcal{J F} \widehat{\mathcal{g}}^{*} s \mathcal{O M}$ if $f\left(\mathfrak{M}_{\text {if }}\right)$ is $\mathcal{J F} \widehat{\mathcal{G}}^{*} \boldsymbol{\mathcal { O }}$ in $\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$ for every $\mathcal{J F} \mathcal{O} \mathcal{S} \mathfrak{M}_{\mathrm{if}}$ in $\left(\mathbb{U}, \tau_{\mathrm{if}}\right)$.

Example 3.2. Let $\mathbb{U}=\{\mathrm{e}, \mathfrak{f}\}, \mathbb{V}=\{\mathfrak{g}, \mathfrak{h}\}, \tau_{\mathfrak{i f}}=\left\{\tilde{0}, \mathfrak{M}_{\mathrm{if}}, \tilde{1}\right\}$ and $\sigma_{\mathfrak{i f}}=\left\{\tilde{0}, \mathfrak{N}_{\mathfrak{i f}}, \tilde{1}\right\}$ where $\mathfrak{M}_{\mathfrak{i f}}==\{<\mathrm{e}$, $0.4,0.6\rangle,\langle\mathfrak{f}, 0.42,0.58\rangle\}$ and $\mathfrak{N}_{\mathfrak{i f}}=\{\langle\mathfrak{g}, 0.45,0.55\rangle,\langle\mathfrak{h}, 0.46,0.54\rangle\}$. Then $\left(\mathbb{U}, \tau_{\text {if }}\right)$ and $\left(\mathbb{V}, \sigma_{\text {if }}\right) \mathcal{J F} \mathcal{F} \mathcal{S}$ s. We define a mapping $f:\left(\mathbb{U}, \tau_{\text {if }}\right) \rightarrow\left(\mathbb{V}, \sigma_{\text {if }}\right)$ by $f(\mathrm{e})=\mathfrak{g}$ and $f(\mathfrak{f})=\mathfrak{h}$. Then f is JF $\widehat{g}^{*} s \mathcal{O M}$.

Theorem 3.3. The following statements are true.
a) Every $\mathcal{J F} \mathcal{O M}$ is an $\mathcal{J F} \widehat{g}^{*} \mathcal{S O M}$.
b) Every $\mathcal{J F} s \mathcal{O M}$ is an $\mathcal{J F} \hat{g}^{*} s \mathcal{O M}$.
c) Every $\mathcal{J F} \alpha \mathcal{O M}$ is an $\mathcal{J F} \hat{g}^{*} s \mathcal{O M}$.
d) Every $\mathcal{J F} \Psi \mathcal{O M}$ is an $\mathcal{J F} \widehat{\mathfrak{g}}^{*} s \mathcal{O M}$.
e) Every $\mathcal{J F} \mathcal{g}^{*} \mathcal{O M}$ is an $\mathcal{J F} \widehat{g}^{*} s \mathcal{O M}$.
f) Every $\mathcal{J F} g^{*} s \mathcal{O M}$ is an $\mathcal{J F} \hat{g}^{*} s \mathcal{O M}$.

Proof:
(a) Let $f:\left(\mathbb{U}, \tau_{\mathrm{if}}\right) \rightarrow\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$ be an $\mathcal{J F C M}$. Let $\mathfrak{\Re}_{\mathrm{if}}$ be an $\mathcal{J F} \mathcal{O} \mathcal{S}$ in $\left(\mathbb{U}, \tau_{\mathrm{if}}\right)$. Since f is an $\mathcal{J F O \mathcal { M }}$, $f\left(\mathfrak{N}_{\mathrm{if}}\right)$ is an $\mathcal{J F} \mathcal{O}$ set $\operatorname{in}\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$. Since every $\mathcal{J F} \mathcal{O} \mathcal{S}$ is an $\mathcal{J F} \widehat{g}^{*} s \mathcal{O} \mathcal{S}, f\left(\mathfrak{N}_{\mathrm{if}}\right)$ is an $\mathcal{J F} \widehat{\mathcal{g}}^{*} s \mathcal{O} \mathcal{S}$ in $\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$. Hence f is an $\mathcal{J F} \widehat{g}^{*} s \mathcal{O M}$.

The proofs for (b), (c), (d), (e) and (f) are similar because every $\mathcal{J F} s \mathcal{O}, \mathcal{J F} \alpha \mathcal{O}, \mathcal{J F} \Psi \mathcal{O}, \mathcal{J F} \mathcal{g}^{*} \mathcal{O}$, and $\mathcal{J F g}{ }^{*}, \mathcal{O} \mathcal{S}$ are $\mathcal{J F} \widehat{\boldsymbol{g}}^{*} \boldsymbol{s} \mathcal{O} \mathcal{S}$.

Remark 3.4. The converse of the statements in the above theorem is not true. The examples below confirm them clearly.

Example 3.5. Let $\mathbb{U}=\{e, \mathfrak{f}, \mathfrak{g}\}, \mathbb{V}=\{\mathfrak{h}, \mathfrak{i}, \mathfrak{i}\}, \tau_{\mathrm{if}}=\left\{\tilde{0}, \mathfrak{M}_{\mathrm{if}}, \tilde{1}\right\}$ and $\sigma_{\mathrm{if}}=\left\{\tilde{0}, \mathfrak{N}_{\mathrm{if}}, \tilde{1}\right\}$ where $\mathfrak{M}_{\mathrm{if}}=\{<\mathrm{e}$, $0.4,0.6>,\langle\mathfrak{f}, 0.42,0.58>,<\mathfrak{g}, 0.41,0.59>\}$ and $\mathfrak{N}_{\text {if }}=\{<\mathfrak{h}, 0.45,0.55>,<\mathfrak{i}, 0.46,0.54>,<\mathfrak{j}$, $0.47,0.53>\}$. Then $\left(\mathbb{U}, \tau_{\mathrm{if}}\right)$ and $\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$ are $\mathcal{J F} \mathcal{F} \mathcal{S}$ s. We define a mapping $f:\left(\mathbb{U}, \tau_{\mathrm{if}}\right) \rightarrow\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$ by $f(\mathrm{e})=\mathfrak{h}, f(\mathfrak{f})=\mathfrak{i}$ and $f(\mathfrak{g})=\mathfrak{j}$. Here, f is an $\mathcal{J F} \widehat{\mathcal{g}}^{*} \mathcal{B O M}$ but not an $\mathcal{J F O M}$, because $\mathcal{J F S} \mathfrak{M}_{\mathrm{if}}=$ $\{<\mathrm{e}, 0.4,0.6>,<\mathfrak{f}, 0.42,0.58>,<\mathfrak{g}, 0.41, \quad 0.59>\}$ is an $\mathcal{J F} \mathcal{O} \mathcal{S}$ in $\left(\mathbb{U}, \tau_{\text {if }}\right)$ but $f\left(\mathfrak{M}_{\text {if }}\right)$ is not an $\mathcal{J F} \mathcal{O}$ in $\left(\mathbb{V}, \sigma_{\text {if }}\right)$.

Example 3.6. Let $\mathbb{U}=\{e, \mathfrak{f}, \mathfrak{g}\}, \mathbb{V}=\{\mathfrak{h}, \mathfrak{i}, \mathfrak{i}\}, \tau_{\mathrm{if}}=\left\{\tilde{0}, \mathfrak{M}_{\mathrm{if}}, \tilde{1}\right\}$ and $\sigma_{\mathrm{if}}=\left\{\tilde{0}, \mathfrak{N}_{\mathrm{if}}, \tilde{1}\right\}$ where $\mathfrak{M}_{\mathrm{if}}=\{<\mathrm{e}$, $0.22,0.72>,\langle\mathfrak{f}, 0.25,0.68\rangle,<\mathfrak{g}, 0.3,0.69>\} \quad$ and $\mathfrak{N}_{\text {if }}=\{<\mathfrak{h}, 0.4,0.6>,<\mathfrak{i}, 0.46,0.54\rangle,<\mathfrak{j}$, $0.47,0.53>\}$. Then $\left(\mathbb{U}, \tau_{\text {if }}\right)$ and $\left(\mathbb{V}, \sigma_{\text {if }}\right)$ are $\mathcal{J F T} \mathcal{S}$ s. We define a mapping $f:\left(\mathbb{U}, \tau_{\mathrm{if}}\right) \rightarrow\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$ by $f(\mathrm{e})=\mathfrak{h}, f(\mathfrak{f})=\mathfrak{i}$ and $f(\mathfrak{g})=\mathfrak{j}$. Then f is an $\mathcal{J F} \widehat{g}^{*} \mathcal{O O M}$ but not an $\mathcal{J F} s \mathcal{O M}$, since $\mathcal{J F} \mathcal{S} \mathfrak{M}_{\text {if }}=\{<$ $\mathrm{e}, 0.22,0.72>,<\mathfrak{f}, 0.25,0.68>,<\mathfrak{g}, 0.3,0.69>\}$ is an $\mathcal{J F O}$ set in $\left(\mathbb{U}, \tau_{\mathrm{if}}\right)$ but $f\left(\mathfrak{M}_{\mathrm{if}}\right)$ is an $\mathcal{J F} \widehat{g}^{*} s \mathcal{O}$ and not an $\mathcal{J F} s \mathcal{O}$ in $\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$.

Example 3.7. Let $\mathbb{U}=\{\mathrm{e}, \mathfrak{f}, \mathfrak{g}\}, \mathbb{V}=\{\mathfrak{h}, \mathfrak{i}, \mathfrak{i}\}, \tau_{\mathfrak{i f}}=\left\{\tilde{0}, \mathfrak{M}_{\mathfrak{i f}}, \widetilde{1}\right\}$ and $\sigma_{\mathrm{if}}=\left\{\tilde{0}, \mathfrak{N}_{\mathfrak{i f}}, \tilde{1}\right\}$ where $\mathfrak{M}_{\mathrm{if}}=\{<\mathrm{e}$, $0.5,0.48>,\langle\mathfrak{f}, 0.6,0.4\rangle,<\mathfrak{g}, 0.4780 .52>\}$ and $\mathfrak{R}_{\mathfrak{i f}}=\{\langle\mathfrak{h}, 0.46,0.52\rangle,\langle\mathfrak{i}, 0.34,0.65\rangle,\langle\mathfrak{j}$, $0.42,0.58>\}$. Then $\left(\mathbb{U}, \tau_{\text {if }}\right)$ and $\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$ are $\mathcal{J F} \mathcal{F} \mathcal{S}$. We define a mapping $f:\left(\mathbb{U}, \tau_{\mathrm{if}}\right) \rightarrow\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$ by $f(e)=\mathfrak{h}, f(\mathfrak{f})=\mathfrak{i}$ and $f(\mathfrak{g})=\mathfrak{j}$. Then f is an $\mathcal{J F} \widehat{\mathfrak{g}}^{*} s \mathcal{O M}$ but not an $\mathcal{J F} \alpha \mathcal{O M}$, since $\mathcal{J F S} \mathfrak{M}_{\mathfrak{i f}}=\{<$ e, $0.5,0.48>,<\mathfrak{f}, 0.6,0.4>,<\mathfrak{g}, 0.4780 .52>\}$ is an $\mathcal{J F} \mathcal{O} \mathcal{S}$ set in $\left(\mathbb{U}, \tau_{\text {if }}\right)$ but $f\left(\mathfrak{M}_{\text {if }}\right)$ is an $\mathcal{J F} \widehat{g}^{*} s \mathcal{O}$ and not an $\mathcal{J F} \alpha \mathcal{O}$ in $\left(\mathbb{V}, \sigma_{\mathfrak{i f}}\right)$.

Example 3.8. Let $\mathbb{U}=\{e, \mathfrak{f}, \mathfrak{g}\}, \mathbb{V}=\{\mathfrak{h}, \mathfrak{i}, \mathfrak{i}\}, \tau_{\mathrm{if}}=\left\{\tilde{0}, \mathfrak{M}_{\mathfrak{i f}}, \tilde{1}\right\}$ and $\sigma_{\mathrm{if}}=\left\{\tilde{0}, \mathfrak{N}_{\mathfrak{i f}}, \tilde{1}\right\}$ where $\mathfrak{M}_{\mathfrak{i f}}=\{<\mathrm{e}$, $0.4,0.6>,\langle\mathfrak{f}, 0.3,0.7\rangle,\langle\mathfrak{g}, 0.280 .71>\} \quad$ and $\mathfrak{N}_{\mathfrak{i f}}=\{\langle\mathfrak{h}, 0.41,0.59>,\langle\mathfrak{i}, 0.34,0.66>,<\mathfrak{j}$, $0.32,0.68>\}$. Then $\left(\mathbb{U}, \tau_{\text {if }}\right)$ and $\left(\mathbb{V}, \sigma_{\text {if }}\right)$ are $\mathcal{J F T} \mathcal{S}$ s. We define a mapping $f:\left(\mathbb{U}, \tau_{\text {if }}\right) \rightarrow\left(\mathbb{V}, \sigma_{\text {if }}\right)$ by $f(\mathrm{e})=\mathfrak{h}, f(\mathfrak{f})=\mathfrak{i}$ and $f(\mathfrak{g})=\mathfrak{j}$. Then f is an $\mathcal{J F} \widehat{\mathfrak{g}}^{*} \mathcal{O M}$ (but not an $\mathcal{J F} \Psi \mathcal{O M}$, since $\mathcal{J F} \mathcal{S} \mathfrak{M}_{\mathrm{if}}=$ $\{<\mathrm{e}, 0.4,0.6>,<\mathfrak{f}, 0.3,0.7>,<\mathfrak{g}, 0.280 .71>\}$ is an $\mathcal{J F O \mathcal { S }}$ in $\left(\mathbb{U}, \tau_{\mathrm{if}}\right)$ but $f\left(\mathfrak{M}_{\mathrm{if}}\right)$ is an $\mathcal{J F} \widehat{\mathcal{g}}^{*} \mathcal{S} \mathcal{O}$ and not an $\mathcal{J F} \Psi \mathcal{O} \mathcal{S}$ in $\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$.

Example 3.9. Let $\mathbb{U}=\{e, \mathfrak{f}, \mathfrak{g}\}, \mathbb{V}=\{\mathfrak{h}, \mathfrak{i}, \mathfrak{j}\}, \tau_{\mathfrak{i f}}=\left\{\tilde{0}, \mathfrak{M}_{\mathrm{if}}, \tilde{1}\right\}$ and $\sigma_{\mathrm{if}}=\left\{\tilde{0}, \mathfrak{N}_{\mathrm{if}}, \tilde{1}\right\}$ where $\mathfrak{M}_{\mathrm{if}}=\{<\mathrm{e}$, $0.45,0.55\rangle,\langle\mathfrak{f}, 0.6,0.4\rangle,\langle\mathfrak{g}, 0.50 .4\rangle\}$ and $\mathfrak{N}_{\mathfrak{i f}}=\{\langle\mathfrak{h}, 0.4,0.6\rangle,\langle\mathfrak{i}, 0.3,0.7\rangle,\langle\mathfrak{j}$, $0.2,0.8>\}$. Then $\left(\mathbb{U}, \tau_{\text {if }}\right)$ and $\left(\mathbb{V}, \sigma_{\text {if }}\right)$ are $\mathcal{J F T} \mathcal{S}$ s. We define a mapping $f:\left(\mathbb{U}, \tau_{\text {if }}\right) \rightarrow\left(\mathbb{V}, \sigma_{\text {if }}\right)$ by $f(\mathrm{e})=\mathfrak{h}, f(\mathfrak{f})=\mathfrak{i}$ and $f(\mathfrak{g})=\mathfrak{j}$. Then f is an $\mathcal{J F} \widehat{g}^{*} \mathcal{O M}$ but not an $\mathcal{J F} g^{*} \mathcal{O M}$, since $\mathcal{J F S}$ $\mathfrak{M}_{\mathrm{if}}==\{\langle e, 0.45,0.55\rangle,\langle\mathfrak{f}, 0.6,0.4\rangle,<\mathfrak{g}, 0.50 .4>\}$ is an $\mathcal{J F} \mathcal{O} \mathcal{S}$ in $\left(\mathbb{U}, \tau_{\mathrm{if}}\right)$ but $f\left(\mathfrak{M}_{\mathrm{if}}\right)$ is an $\mathcal{J F} \widehat{\mathcal{g}}^{*} \mathcal{O} \mathcal{S}$ and not an $\mathcal{J F} \mathcal{g}^{*} \mathcal{O S}$ in $\left(\mathbb{V}, \sigma_{\text {if }}\right)$.

Example 3.10. Let $\mathbb{U}=\{e, \mathfrak{f}, \mathfrak{g}\}, \mathbb{V}=\{\mathfrak{h}, \mathfrak{i}, \mathfrak{i}\}, \tau_{i f}=\left\{\tilde{0}, \mathfrak{M}_{\mathrm{if}}, \tilde{1}\right\}$ and $\sigma_{\mathrm{if}}=\left\{\tilde{0}, \mathfrak{N}_{\mathfrak{i f}}, \tilde{1}\right\}$ where $\mathfrak{M}_{\mathfrak{i f}}=\{<\mathrm{e}$, $0.55,0.20\rangle,\langle\mathfrak{f}, 0.6,0.4\rangle,\langle\mathfrak{g}, 0.720 .28>\}$ and $\mathfrak{N}_{\mathfrak{i f}}=\{\langle\mathfrak{h}, 0.25,0.75\rangle,\langle\mathfrak{i}, 0.3,0.7\rangle,\langle\mathfrak{j}$, $0.27,0.73>\}$. Then $\left(\mathbb{U}, \tau_{\mathrm{if}}\right)$ and $\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$ are $\mathcal{J F} \mathcal{F} \mathcal{S}$ s. We define a mapping $f\left(\mathbb{U}, \tau_{\mathrm{if}}\right) \rightarrow\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$ by $f(\mathrm{e})=\mathfrak{h}, f(\mathfrak{f})=\mathfrak{i}$ and $f(\mathfrak{g})=\mathfrak{j}$. Then f is an $\mathcal{J F} \widehat{g}^{*} s \mathcal{O M}$ but not an $\mathcal{J F} g^{*} s \mathcal{O M}$, since $\mathcal{J F S}$ $\left.\mathfrak{M}_{\mathfrak{i f}}=\{<\mathrm{e}, 0.55,0.20\rangle,\langle\mathfrak{f}, 0.6,0.4\rangle,<\mathfrak{g}, 0.720 .28>\right\}$ is an $\mathcal{J F} \mathcal{O} \mathcal{S}$ in $\left(\mathbb{U}, \tau_{\mathrm{if}}\right)$ but $f\left(\mathfrak{M}_{\mathrm{if}}\right)$ is an $\mathcal{J F} \widehat{\mathcal{g}}^{*} s \mathcal{O S}$ and not an $\mathcal{J F} \mathcal{g}^{*} s \mathcal{O} \mathcal{S}$ in $\left(\mathbb{V}, \sigma_{\text {if }}\right)$.

Remark. 3.11: $\mathcal{J F} \widehat{\mathcal{g}}^{*} s \mathcal{O M}$ and $\mathcal{J F} \widehat{\mathcal{O}} \mathcal{O M}$ are independent. The examples given below testify it.
Example 3.12. Let $\mathbb{U}=\{e, \mathfrak{f}, \mathfrak{g}\}, \mathbb{V}=\{\mathfrak{h}, \mathfrak{i}, \mathfrak{i}\}, \tau_{\mathrm{if}}=\left\{\tilde{0}, \mathfrak{M}_{\mathrm{if}}, \tilde{1}\right\}$ and $\sigma_{\mathrm{if}}=\left\{\tilde{0}, \mathfrak{M}_{\mathrm{if}}, \tilde{1}\right\}$ where $\mathfrak{M}_{\mathrm{if}}=\{<\mathrm{e}$, $0.3,0.7>,\langle\mathfrak{f}, 0.4,0.6\rangle,<\mathfrak{g}, 0.250 .75>\} \quad$ and $\mathfrak{N}_{\mathfrak{i f}}=\{\langle\mathfrak{h}, 0.2,0.78\rangle,\langle\mathfrak{i}, 0.3,0.7\rangle,<\mathfrak{j}$, $0.22,0.78>\}$. Then $\left(\mathbb{U}, \tau_{\mathrm{if}}\right)$ and $\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$ are $\mathcal{J F T} \mathcal{S}$ s. We define a mapping $f:\left(\mathbb{U}, \tau_{\mathrm{if}}\right) \rightarrow\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$ by $f(\mathrm{e})=\mathfrak{h}, f(\mathfrak{f})=\mathfrak{i}$ and $f(\mathfrak{g})=\mathfrak{j}$. Then $f\left(\mathfrak{M}_{\mathfrak{i f}}\right)$ is an $\mathcal{J F} \widehat{\mathrm{g}}^{*} s \mathcal{O}$ set in $\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$ and not an $\mathcal{J F} \widehat{\mathcal{G}} \mathcal{O}$ set in $\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$ where $\left.\left.\left.\mathfrak{M}_{\mathrm{if}}=\{<\mathrm{e}, 0.3,0.7\rangle,<\mathfrak{f}, 0.4,0.6\right\rangle,<\mathfrak{g}, 0.250 .75\right\rangle\right\}$ is an $\mathcal{J F O \mathcal { S }}$ set in $\left(\mathbb{U}, \tau_{\mathrm{if}}\right)$. Therefore f is an $\mathcal{J F} \widehat{g}^{*} s \mathcal{O M}$ but not an $\mathcal{J F} \widehat{\mathcal{O}} \mathcal{O M}$.

Example 3.13. Let $\mathbb{U}=\{e, \mathfrak{f}, \mathfrak{g}\}, \mathbb{V}=\{\mathfrak{h}, \mathfrak{i}, \mathfrak{i}\}, \tau_{\mathfrak{i f}}=\left\{\tilde{0}, \mathfrak{M}_{\mathfrak{i f}}, \tilde{1}\right\}$ and $\sigma_{\mathfrak{i f}}=\left\{\tilde{0}, \mathfrak{N}_{\mathfrak{i f}}, \tilde{1}\right\}$ where $\mathfrak{M}_{\mathfrak{i f}}=\{<\mathrm{e}$, $0.22,0.78\rangle,\langle\mathfrak{f}, 0.7,0.3\rangle,\langle\mathfrak{g}, 0.350 .65>\} \quad$ and $\mathfrak{N}_{\mathfrak{i f}}=\{\langle\mathfrak{h}, 0.3,0.7\rangle,\langle\mathfrak{i}, 0.4,0.6\rangle,\langle\mathfrak{j}$, $0.37,0.6>\}$. Then $\left(\mathbb{U}, \tau_{\text {if }}\right)$ and $\left(\mathbb{V}, \sigma_{\text {if }}\right)$ are $\mathcal{J F} \mathcal{T} \mathcal{S}$ s. We define a mapping $f\left(\mathbb{U}, \tau_{\text {if }}\right) \rightarrow\left(\mathbb{V}, \sigma_{\text {if }}\right)$ by $f(\mathrm{e})=\mathfrak{h}, f(\mathfrak{f})=\mathfrak{i}$ and $f(\mathfrak{g})=\mathfrak{i}$. Then $f\left(\mathfrak{M}_{\mathfrak{i f}}\right)$ is an $\mathcal{J F} \widehat{\mathcal{g}} \mathcal{O} \mathcal{S}$ in $\left(\mathbb{V}, \sigma_{\mathfrak{i f}}\right)$ and not an $\mathcal{J F} \widehat{\mathcal{g}}^{*} \mathcal{O} \mathcal{S}$ in $\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$ where $\left.\mathfrak{M}_{\mathrm{if}}=\{<\mathrm{e}, 0.22,0.78\rangle,<\mathfrak{f}, 0.7,0.3>,<\mathfrak{g}, 0.350 .65>\right\}$ is an $\mathcal{J F} \mathcal{O} \mathcal{S}$ in $\left(\mathbb{U}, \tau_{\text {if }}\right)$. Therefore f is an $\mathcal{J F} \widehat{\mathcal{O}} \mathcal{O}$ but not an $\mathcal{J F} \widehat{g}^{*} s \mathcal{O M}$.

The diagram below depicts the interrelationship of $\mathcal{J F} \widehat{\boldsymbol{g}}^{*} s \mathcal{O M}$ with some of the other $\mathcal{J F}$ mappings.

Figure 3.1

Theorem 3.14. If $f:\left(\mathbb{U}, \tau_{\mathrm{if}}\right) \rightarrow\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$ is an $\mathcal{J F} \hat{\mathcal{g}}^{*} s \mathcal{O M}$ then $\operatorname{int}_{\mathrm{if}}\left(f^{-1}\left(\mathfrak{M}_{\mathrm{if}}\right)\right) \subseteq$ $f^{-1}\left(\hat{g}^{*} \sin t_{\mathrm{if}}\left(\mathfrak{M}_{\mathrm{if}}\right)\right)$ for every $\mathcal{J F} \mathcal{S} \mathfrak{M}_{\mathrm{if}}$ of $\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$.

Proof: Let $\mathfrak{M}_{\mathrm{if}}$ be an $\mathcal{J F S}$ of $\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$. Then $\operatorname{int}_{\mathrm{if}}\left(f^{-1}\left(\mathfrak{M}_{\mathrm{if}}\right)\right)$ is an $\mathcal{J F} \mathcal{O} \mathcal{S}$ in $\left(\mathbb{U}, \tau_{\mathrm{if}}\right)$. Since f is an $\mathcal{J F} \hat{\mathcal{G}}^{*} s \mathcal{O M}, f\left(\operatorname{int}_{\mathrm{if}}\left(f^{-1}\left(\mathfrak{M}_{\mathrm{if}}\right)\right)\right)$ is an $\mathcal{J F} \widehat{\operatorname{g}}^{*} s \mathcal{O} \mathcal{S}$ in $\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$. And hence $f\left(\operatorname{int}_{\mathrm{if}}\left(f^{-1}\left(\mathfrak{M}_{\mathrm{if}}\right)\right)\right) \subseteq$ $\widehat{g}^{*} \operatorname{sint} t_{\mathrm{if}}\left(f\left(f^{-1}\left(\mathfrak{M}_{\mathrm{if}}\right)\right)\right) \subseteq \widehat{\boldsymbol{g}}^{*} \sin t_{\mathrm{if}}\left(\mathfrak{M}_{\mathrm{if}}\right)$. Thus $_{\operatorname{int}}^{\mathrm{if}}\left(f^{-1}\left(\mathfrak{M}_{\mathrm{if}}\right)\right) \subseteq f^{-1}\left(\widehat{\mathcal{g}}^{*} \sin t_{\mathrm{if}}\left(\mathfrak{M}_{\mathrm{if}}\right)\right)$.

Theorem 3.15. A mapping $f:\left(\mathbb{U}, \tau_{\mathrm{if}}\right) \rightarrow\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$ is an $\mathcal{J F} \widehat{\mathfrak{g}}^{*} s \mathcal{O}$ iff for every $\mathcal{J F} \mathcal{O} \mathcal{S} \mathfrak{M}_{\mathrm{if}}$ of $\left(\mathbb{U}, \tau_{\mathrm{if}}\right)$, $f\left(\right.$ int $\left._{\mathrm{if}}\left(\mathfrak{M}_{\mathrm{if}}\right)\right) \subseteq \widehat{g}^{*} \operatorname{sint} t_{\mathrm{if}}\left(f\left(\mathfrak{M}_{\mathrm{if}}\right)\right)$.

Proof: Necessity: Let $f:\left(\mathbb{U}, \tau_{\mathrm{if}}\right) \rightarrow\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$ be an $\mathcal{J F} \widehat{g}^{*} s \mathcal{O M}$ and $\mathfrak{M}_{\mathrm{if}}$ is an $\mathcal{J F} \mathcal{O} \mathcal{S}$ in $\left(\mathbb{U}, \tau_{\mathrm{if}}\right)$. Now int $t_{\mathrm{if}}\left(\mathfrak{M}_{\mathrm{if}}\right)=\mathfrak{M}_{\mathrm{if}}$ which implies that $f\left(\right.$ int $\left._{\mathrm{if}}\left(\mathfrak{M}_{\mathrm{if}}\right)\right) \subseteq f\left(\mathfrak{M}_{\mathrm{if}}\right)$. Since f is an $\mathcal{J F} \widehat{\mathcal{g}}^{*} s \mathcal{O M}$,
 $\hat{\boldsymbol{g}}^{*} \operatorname{sint} t_{\mathrm{if}}\left(f\left(\mathfrak{M}_{\mathrm{if}}\right)\right)$.

Sufficiency: Suppose that $\mathfrak{M}_{\mathrm{if}}$ is an $\mathcal{J F} \mathcal{O} \mathcal{S}$ of $\left(\mathbb{U}, \tau_{\mathrm{if}}\right)$. Then $f\left(\mathfrak{M}_{\mathrm{if}}\right)=f\left(\right.$ int $\left._{\mathrm{if}}\left(\mathfrak{M}_{\mathrm{if}}\right)\right) \subseteq$ $\widehat{g}^{*} \sin t_{\mathrm{if}}\left(f\left(\mathfrak{M}_{\mathrm{if}}\right)\right)$. But $\widehat{g}^{*} \operatorname{sint} t_{\mathrm{if}}\left(f\left(\mathfrak{M}_{\mathrm{if}}\right)\right) \subseteq f\left(\mathfrak{M}_{\mathrm{if}}\right)$. Consequently $f\left(\mathfrak{M}_{\mathrm{if}}\right)=\widehat{g}^{*} \sin t_{\mathrm{if}}\left(f\left(\mathfrak{M}_{\mathrm{if}}\right)\right) \Rightarrow$ $f\left(\mathfrak{M}_{\mathrm{if}}\right)$ is an $\mathcal{J F} \widehat{\mathcal{g}}^{*} \boldsymbol{\mathcal { O } \mathcal { S }}$ of $\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$ and hence f is an $\mathcal{J F} \widehat{g}^{*} s \mathcal{O M}$.

Theorem 3.16. A bijective mapping $f:\left(\mathbb{U}, \tau_{\mathrm{if}}\right) \rightarrow\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$ is $\mathcal{J F} \widehat{g}^{*} s \mathcal{O M}$ iff for every $\mathcal{J F} \mathcal{S} \mathfrak{N}_{\mathrm{if}}$ of $\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$ and for every $\mathcal{J F C S} \mathcal{H}_{\mathrm{if}}$ in $\left(\mathbb{U}, \tau_{\mathrm{if}}\right)$ containing $f^{-1}\left(\mathfrak{N}_{\mathrm{if}}\right)$, there is an $\mathcal{J F} \hat{\mathcal{G}}^{*} s \mathcal{C} \mathcal{S} \mathfrak{M}_{\mathrm{if}}$ of $\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$ such that $\mathfrak{N}_{\mathrm{if}} \subseteq \mathfrak{M}_{\mathrm{if}}$ and $f^{-1}\left(\mathfrak{M}_{\mathrm{if}}\right) \subseteq \mathcal{H}_{\mathrm{if}}$.

Proof. Necessity: Let $\mathfrak{N}_{\mathrm{if}}$ be any $\mathcal{J F S}$ in $\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$. Let $\mathcal{H}_{\mathrm{if}}$ be $\mathcal{J F C S}$ in $\left(\mathbb{U}, \tau_{\mathrm{if}}\right)$ such that $f^{-1}\left(\mathfrak{N}_{\mathrm{if}}\right) \subseteq$ $\mathcal{H}_{\mathrm{if}}$, then $\mathcal{H}_{\mathrm{if}}{ }^{\mathrm{C}}$ is an $\mathcal{J F} \mathcal{O} \mathcal{S}$ in $\left(\mathbb{U}, \tau_{\mathrm{if}}\right)$. By given condition $f\left(\mathcal{H}_{\mathrm{if}}{ }^{\mathrm{C}}\right)$ is $\mathcal{J F} \widehat{\mathcal{G}}^{*} s \mathcal{O} \mathcal{S}$ in $\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$. Let $\mathfrak{M}_{\mathrm{if}}=$ $\left(f\left(\mathcal{H}_{\mathrm{if}}{ }^{\mathrm{C}}\right)\right)^{\mathrm{C}}$, then $\mathfrak{M}_{\mathrm{if}}$ is an $\mathcal{J F} \widehat{\mathcal{g}}^{*} s \mathcal{C} \mathcal{S}$ in $\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$ and $\mathfrak{N}_{\mathrm{if}} \subseteq \mathfrak{M}_{\mathrm{if}}$, since for a bijective mapping $\left(f\left(\mathcal{H}_{\mathrm{if}}{ }^{\mathrm{C}}\right)\right)^{\mathrm{C}}=f\left(\mathcal{H}_{\mathrm{if}}\right)$. Now $f^{-1}\left(\mathfrak{M}_{\mathrm{if}}\right)=f^{-1}\left(f\left(\mathcal{H}_{\mathrm{if}}{ }^{\mathrm{C}}\right)\right)^{\mathrm{C}}=\left(f^{-1}\left(f\left(\mathcal{H}_{\mathrm{if}}{ }^{\mathrm{C}}\right)\right)\right)^{\mathrm{C}} \subseteq \mathcal{H}_{\mathrm{if}}$.

Sufficiency: Let $\mathfrak{M}_{\mathrm{if}}$ be any $\mathcal{J F} \mathcal{O} \mathcal{S}$ in $\left(\mathbb{U}, \tau_{\mathrm{if}}\right)$, then $\mathfrak{M}_{\mathrm{if}}{ }^{\mathrm{C}}$ is an $\mathcal{J F C \mathcal { S }}$ in $\left(\mathbb{U}, \tau_{\mathrm{if}}\right)$ and $f^{-1}\left(f\left(\mathfrak{M}_{\mathrm{if}}{ }^{\mathrm{C}}\right)\right) \subseteq$ $\mathfrak{M}_{\mathrm{if}}{ }^{\mathrm{C}}$. By given condition there exists an $\mathcal{J F} \widehat{\mathcal{g}}^{*} \mathcal{S} \mathcal{C} \mathcal{S} \mathfrak{N}_{\mathrm{if}}$ in $\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$ such that $f\left(\mathfrak{M}_{\mathrm{if}}{ }^{\mathrm{C}}\right) \subseteq \mathfrak{N}_{\mathrm{if}}$ and $f^{-1}\left(\mathfrak{N}_{\mathrm{if}}\right) \subseteq \mathfrak{M}_{\mathrm{if}}{ }^{\mathrm{C}}$. Hence $\mathfrak{N}_{\mathrm{if}}{ }^{\mathrm{C}} \subseteq f\left(\mathfrak{M}_{\mathrm{if}}\right) \subseteq f\left(f^{-1}\left(\mathfrak{N}_{\mathrm{if}}\right)\right)^{\mathrm{C}} \subseteq\left(f\left(f^{-1}\left(\mathfrak{N}_{\mathrm{if}}\right)\right)\right)^{\mathrm{C}} \subseteq \mathfrak{N}_{\mathrm{if}}{ }^{\mathrm{C}}$. This implies that $f\left(\mathfrak{M}_{\mathrm{if}}\right)=\mathfrak{N}_{\mathrm{if}}{ }^{\mathrm{C}}$. Since $\mathfrak{N}_{\mathrm{if}}{ }^{\mathrm{C}}$ is an $\mathcal{J F} \widehat{\mathcal{g}}^{*} s \mathcal{O} \mathcal{S}, f\left(\mathfrak{M}_{\mathrm{if}}\right)$ is an $\mathcal{J F} \widehat{\mathcal{g}}^{*} s \mathcal{O} \mathcal{S}$ in $\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$. Hence f is an $\mathcal{J F} \widehat{g}^{*} s \mathcal{O M}$.

Theorem 3.17. If $f:\left(\mathbb{U}, \tau_{\mathrm{if}}\right) \rightarrow\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$ is an $\mathcal{J F} \mathcal{O M}$ and $g:\left(\mathbb{V}, \sigma_{\mathrm{if}}\right) \rightarrow\left(\mathbb{W}, \eta_{\mathrm{if}}\right)$ is $\mathcal{J F} \hat{\mathcal{G}}^{*} \mathcal{O M}$ (hen $g \circ f:\left(\mathbb{U}, \tau_{\text {if }}\right) \rightarrow\left(\mathbb{W}, \eta_{\text {if }}\right)$ is $\mathcal{J F} \widehat{g}^{*} s \mathcal{O M}$.

Proof: Let $\mathfrak{M}_{\mathrm{if}}$ be an $\mathcal{J F} \mathcal{O} \mathcal{S}$ in $\left(\mathbb{U}, \tau_{\mathrm{if}}\right)$ Then by given condition, $f\left(\mathfrak{M}_{\mathrm{if}}\right)$ is $\mathcal{J F} \mathcal{O} \mathcal{S}$ in $\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$. Also given that $g:\left(\mathbb{V}, \sigma_{\mathrm{if}}\right) \rightarrow\left(\mathbb{W}, \eta_{\mathrm{if}}\right)$ is an $\mathcal{J F} \hat{\mathcal{g}}^{*} s \mathcal{O} \mathcal{M}$. This implies $g\left(f\left(\mathfrak{M}_{\mathrm{if}}\right)\right)=(g \circ f)\left(\mathfrak{M}_{\mathrm{if}}\right)$ is $\mathcal{J F} \widehat{\mathcal{g}}^{*} \boldsymbol{s O \mathcal { S }}$ in $\left(\mathbb{W}, \eta_{\mathrm{if}}\right)$. Hence $g \circ f:\left(\mathbb{U}, \tau_{\mathrm{if}}\right) \rightarrow\left(\mathbb{W}, \eta_{\mathrm{if}}\right)$ is an $\mathcal{J F} \widehat{\mathcal{g}}^{*} s \mathcal{O M}$.

Theorem 3.18. Let $f:\left(\mathbb{U}, \tau_{\mathrm{if}}\right) \rightarrow\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$ and $g:\left(\mathbb{V}, \sigma_{\mathrm{if}}\right) \rightarrow\left(\mathbb{W}, \eta_{\mathrm{if}}\right)$ be two mappings and let $g \circ$ $f:\left(\mathbb{U}, \tau_{\text {if }}\right) \rightarrow\left(\mathbb{W}, \eta_{\text {if }}\right)$ be $\mathcal{J F} \hat{g}^{*} s \mathcal{O M}$. Then
(a) If g is irresolute and injective, then f is $\mathcal{J F} \widehat{g}^{*} s \mathcal{O M}$.
(b) If f is $\mathcal{J F} \widehat{g}^{*} s$ - cont., surjective and ($\mathbb{U}, \tau_{\mathrm{if}}$) is an $\mathcal{J F} \widehat{g}^{*} s$ space, then g is $\mathcal{J F} \widehat{g}^{*} s \mathcal{O M}$.

Proof: (a) Let $\mathfrak{N}_{\mathrm{if}}$ be an $\mathcal{J F} \mathcal{O} \mathcal{S}$ in $\left(\mathbb{U}, \tau_{\mathrm{if}}\right)$. Then $(g \circ f)\left(\mathfrak{N}_{\mathrm{if}}\right)$ is $\mathcal{J F} \widehat{g}^{*} s \mathcal{O}$ in $\left(\mathbb{W}, \eta_{\mathrm{if}}\right)$ and $g^{-1}((g \circ$ $\left.f)\left(\mathfrak{N}_{\mathrm{if}}\right)\right)$) $=f\left(\mathfrak{N}_{\mathrm{if}}\right)$ is $\mathcal{J F} \widehat{\mathcal{g}}^{*} \boldsymbol{\mathcal { O }}$ in $\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$ (since g is irresolute). Hence f is $\mathcal{J F} \widehat{\mathcal{g}}^{*} s \mathcal{O M}$.
(b) Let $\mathfrak{N}_{\mathrm{if}}$ be an $\mathcal{J F} \mathcal{O} \mathcal{S}$ in $\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$ Then $f^{-1}\left(\mathfrak{N}_{\mathrm{if}}\right)$ is $\mathcal{J F} \widehat{\mathcal{g}}^{*} s \mathcal{O}$ in $\left(\mathbb{U}, \tau_{\mathrm{if}}\right)$ and $(g \circ f)\left(f^{-1}\left(\mathfrak{N}_{\mathrm{if}}\right)\right)=$ $g\left(\mathfrak{N}_{\mathrm{if}}\right)$, which is $\mathcal{J F} \widehat{g}^{*} s \mathcal{O}$ in $\left(\mathbb{W}, \eta_{\text {if }}\right)$ Hence g is $\mathcal{J F} \hat{g}^{*} s \mathcal{O M}$.

Theorem 3.19. A mapping $f:\left(\mathbb{U}, \tau_{\mathrm{if}}\right) \rightarrow\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$ is an $\mathcal{J F} \widehat{\mathcal{g}}^{*} s \mathcal{O}$ mapping if $f\left(\widehat{\mathcal{g}}^{*} \sin t_{\mathrm{if}}\left(\mathfrak{M}_{\mathrm{if}}\right)\right) \subseteq$ $\widehat{g}^{*} \operatorname{sint} t_{\mathrm{if}}\left(f\left(\mathfrak{M}_{\mathrm{if}}\right)\right)$ for every $\mathfrak{M}_{\mathrm{if}} \in\left(\mathbb{U}, \sigma_{\mathrm{if}}\right)$.
Proof: Let $\mathfrak{M}_{\mathrm{if}}$ be an $\mathcal{J F} \mathcal{O} \mathcal{S}$ in $\left(\mathbb{U}, \sigma_{\mathrm{if}}\right)$. Then $\operatorname{int}_{\mathrm{if}}\left(\mathfrak{M}_{\mathrm{if}}\right)=\mathfrak{M}_{\mathrm{if}}$. Now $f\left(\mathfrak{M}_{\mathrm{if}}\right)=f\left(\right.$ int $\left.t_{\mathrm{if}}\left(\mathfrak{M}_{\mathrm{if}}\right)\right) \subseteq$ $f\left(\widehat{g}^{*} \operatorname{sint} t_{\mathrm{if}}\left(\mathfrak{M}_{\mathrm{if}}\right)\right) \subseteq \widehat{g}^{*} \operatorname{sint} t_{\mathrm{if}}\left(f\left(\mathfrak{M}_{\mathrm{if}}\right)\right)$, by hypothesis. But $\widehat{\mathcal{g}}^{*} \operatorname{sint} t_{\mathrm{if}}\left(f\left(\mathfrak{M}_{\mathrm{if}}\right)\right) \subseteq f\left(\mathfrak{M}_{\mathrm{if}}\right)$. Therefore $f\left(\mathfrak{M}_{\mathrm{if}}\right)$ is an $\mathcal{J F} \widehat{\mathcal{g}}^{*} \boldsymbol{\mathcal { O } \mathcal { S }}$ in $\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$. Hence f is an $\mathcal{J F} \widehat{\mathcal{g}}^{*} s \mathcal{O}$ mapping.

Definition 3.20. An $\mathcal{J F T} \mathcal{S}\left(\mathbb{U}, \tau_{\mathfrak{i f}}\right)$ is called $\mathcal{J F} \hat{g}^{*}$ semi $T_{1 / 2}^{*}$ space $\left(\mathcal{J F} \widehat{\mathcal{g}}^{*} s T_{1 / 2}^{*}\right.$ space) if every $\mathcal{J F} \widehat{g}^{*} s \mathcal{O S}$ is $\mathcal{J F O S}$ in $\left(\mathbb{U}, \tau_{\text {if }}\right)$.

Theorem 3.21. A mapping $f:\left(\mathbb{U}, \tau_{\mathrm{if}}\right) \rightarrow\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$ is an $\mathcal{J F} \widehat{\mathcal{g}}^{*} s \mathcal{O}$ mapping iff $\operatorname{int}_{\mathrm{if}}\left(f^{-1}\left(\mathfrak{N}_{\mathrm{if}}\right)\right) \subseteq$ $f^{-1}\left(\operatorname{int}_{\mathrm{if}}\left(\mathfrak{R}_{\mathrm{if}}\right)\right)$ for every $\mathfrak{N}_{\mathrm{if}} \in\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$, where $\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$ is an $\mathcal{J F} \widehat{\mathcal{G}}^{*} s T^{*}{ }_{1 / 2}$ space.

Proof: Necessary Part: Let $\mathfrak{N}_{\mathrm{if}} \in\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$. Then $f^{-1}\left(\mathfrak{N}_{\mathrm{if}}\right) \subseteq\left(\mathbb{U}, \tau_{\mathrm{if}}\right)$ and $\operatorname{int} t_{\mathrm{if}}\left(f^{-1}\left(\mathfrak{N}_{\mathrm{if}}\right)\right)$ is an $\mathcal{J F} \mathcal{O} \mathcal{S}$ in $\left(\mathbb{U}, \tau_{\mathrm{if}}\right)$. By Hypothesis, $f\left(\operatorname{int}_{\mathrm{if}}\left(f^{-1}\left(\mathfrak{N}_{\mathrm{if}}\right)\right)\right.$) is an $\mathcal{J F} \widehat{\mathcal{g}}^{*} s \mathcal{O} \mathcal{S}$ in $\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$. Since $\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$ is an $\mathcal{J F} \widehat{\mathcal{g}}^{*} s$ $T^{*}{ }_{1 / 2}$ space, $f\left(\operatorname{int}_{\mathrm{if}}\left(f^{-1}\left(\mathfrak{N}_{\mathrm{if}}\right)\right)\right.$) is an $\mathcal{J F} \mathcal{O} \mathcal{S}$ in $\left(\mathbb{V}, \tau_{\mathrm{if}}\right)$. Therefore $f\left(\operatorname{int}_{\mathrm{if}}\left(f^{-1}\left(\mathfrak{N}_{\mathrm{if}}\right)\right)=\right.$ $\operatorname{int}_{\mathrm{if}}\left(f\left(\operatorname{int}_{\mathrm{if}}\left(f^{-1}\left(\mathfrak{N}_{\mathrm{if}}\right)\right)\right)\right) \subseteq \operatorname{int}_{\mathrm{if}}\left(f\left(f^{-1}\left(\mathfrak{N}_{\mathrm{if}}\right)\right)\right) \subseteq \operatorname{int}_{\mathrm{if}}\left(\mathfrak{N}_{\mathrm{if}}\right)$. This implies $\quad \operatorname{int}_{\mathrm{if}}\left(f^{-1}\left(\mathfrak{N}_{\mathrm{if}}\right)\right) \subseteq$ $f^{-1}\left(f\left(\operatorname{int}_{\mathrm{if}}\left(f^{-1}\left(\mathfrak{N}_{\mathrm{if}}\right)\right)\right)\right) \subseteq f^{-1}\left(\operatorname{int}_{\mathrm{if}}\left(\mathfrak{N}_{\mathrm{if}}\right)\right)$.

Sufficient Part: Let $\mathfrak{M}_{\mathrm{if}}$ be an $\mathcal{J F O \mathcal { S }}$ in $\left(\mathbb{U}, \tau_{\mathrm{if}}\right)$. Therefore int $_{\mathrm{if}}\left(\mathfrak{M}_{\mathrm{if}}\right)=\mathfrak{M}_{\mathrm{if}}$. Then $f\left(\mathfrak{M}_{\mathrm{if}}\right) \subseteq\left(\mathbb{V}, \tau_{\mathrm{if}}\right)$. By hypothesis $\operatorname{int}_{\mathrm{if}}\left(f^{-1}\left(f\left(\left(\mathfrak{M}_{\mathrm{if}}\right)\right)\right) \subseteq f^{-1}\left(\operatorname{int}_{\mathrm{if}}\left(f\left(\mathfrak{M}_{\mathrm{if}}\right)\right)\right)\right.$. That is $\operatorname{int}_{\mathrm{if}}\left(\mathfrak{M}_{\mathrm{if}}\right) \subseteq$ $\operatorname{int}_{\mathrm{if}}\left(f^{-1}\left(f\left(\left(\mathfrak{M}_{\mathrm{if}}\right)\right)\right) \subseteq f^{-1}\left(\operatorname{int}_{\mathrm{if}}\left(f\left(\mathfrak{M}_{\mathrm{if}}\right)\right)\right)\right.$. Therefore $\mathfrak{M}_{\mathrm{if}} \subseteq f^{-1}\left(\operatorname{int}_{\mathrm{if}}\left(f\left(\mathfrak{M}_{\mathrm{if}}\right)\right)\right)$. This implies $f\left(\mathfrak{M}_{\mathrm{if}}\right) \subseteq f\left(f^{-1}\left(\operatorname{int}_{\mathrm{if}}\left(f\left(\mathfrak{M}_{\mathrm{if}}\right)\right)\right)\right) \subseteq \operatorname{int}_{\mathrm{if}}\left(f\left(\mathfrak{M}_{\mathrm{if}}\right)\right) \subseteq f\left(\mathfrak{M}_{\mathrm{if}}\right)$. Hence $f\left(\mathfrak{M}_{\mathrm{if}}\right)$ is an $\mathcal{J F} \mathcal{O} \mathcal{S}$ in $\left(\mathbb{V}, \tau_{\mathrm{if}}\right)$ and hence an $\mathcal{J F} \widehat{g}^{*} s \mathcal{O} \mathcal{S}$ in $\left(\mathbb{V}, \sigma_{\mathrm{if}}\right)$. Thus f is an $\mathcal{J F} \widehat{\mathcal{g}}^{*} s \mathcal{O}$ mapping.

REFERENCES

[1] Atanassov, K.T. Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 1986, 87-96.
[2] Chang. C.L, Fuzzy topological spaces, J. Math. Anal. and Appl., 24(1), 1968, 182-190.
[3] Coker. D, An introduction to intuitionistic fuzzy topological spaces, Fuzzy sets and systems, 88, 1997, 81-89.
[4] Coker. D, An introduction to fuzzy subspaces in intuitionistic fuzzy topological spaces, The Jour. Fuzzy Math., 4, 1996, 749-764.
[5] Coker, D., and Demirci, M.,"On Intuitionistic Fuzzy Points", Notes on intuitionistic fuzzy sets, 1995, 79-84.

Catalyst Research
Volume 23, Issue 2, December 2023
Pp. 4905-4912
[6] Gurcay, H., Coker. D., and Haydar, A., On fuzzy continuity in intuitionistic fuzzy topological spaces, jour. of fuzzy math., 5 (1997), 365-378.
[7] Lee. J. L, et al., Intuitionistic continuous, closed and open mappings, Annals of Fuzzy Mathematics and Informatics Volume x, No. x, (Month 201y), pp. 1-xx
[8] Noiri. T, A generalization of closed mappings, Atti. Acad. Naz. Lincei rend. Cl. Ser. Fis Mat. Natur., 54, 1973, 412-415.
[9] Pious Missier S, Babisha Julit R. L, "On Intuitionistic Fuzzy $g^{*} s$ - Closed Mappings," RTMM2021 (pages 164-173).
[10] Pious Missier S, Peter Arokiaraj A, A. Nagarajan \& S.Jackson, Intuitionistic Fuzzy \widehat{g}^{*} Semi Closed and Open Sets in Intuitionistic Fuzzy Topological Spaces, Kanpur Publications, ISSSN 2348-8301, Vol. X, Issue I(B):2023, 122-128.
[11] Santhi and D. Jayanthi, "Intuitionistic fuzzy generalized semi pre-closed mappings", Journal of Informatics and Mathematical Sciences", NIFS 16(2010), 3, 28-39.
[12] Santhi. R and K.Sakthivel. K, Alpha generalized closed mappings in intuitionistic fuzzy topological spaces, Far East Journal of Mathematical Sciences, 43(2010), 265-275.
[13] Thakur S.S. and Chaturvedi R., 2008, "Generalized closed set in intuitionistic fuzzy topology", The journal of Fuzzy Mathematics 16(3) ,pp, 559-572.
[14] Thakur S. S and Jyothi pandey Bajpey, Intuitionistic fuzzy g open and g closed mapping, Vikram mathematical journal, 2007, 35-42.
[15] Thakur S.S and Jyothi pandey Bajpey, 2010, "Intuitionistic fuzzy w-closed sets and intuitionistic fuzzy w-continuity", International Journal of Contemporary Advanced Mathematics, 1(1), pp. 115.
[16] Zadeh L.A, Fuzzy sets, Information and control, 8, 1965, 338-353.

