Intuitionistic Fuzzy \hat{g}^* Semi Open Mappings in Intuitionistic Fuzzy Topological Spaces

A. Peter Arokiaraj^{1*}, J. Martina Jency², S. Pious Missier³

^{1*}Research Scholar (Reg.No-19222232091032), PG and Research Department of Mathematics, V.O.Chidambaram College, (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012), Thoothukudi-628 008, Tamil Nadu, India.

²Assistant Professor, PG and Research Department of Mathematics, V.O.Chidambaram College, (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012), Thoothukudi-628 008, Tamil Nadu, India.

³Head & Associate Professor (Rtd.), Department of Mathematics, Don Bosco College of Arts and Science, (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012)

Keela Eral, Thoothukudi-628 908, Tamil Nadu, India.

¹<u>petrajsdb@gmail.com</u>

²<u>martinajency@gmail.com</u>

³spmissier@gmail.com

<u>Abstract:</u> This article is intended to launch another breakthrough in *Intuitionistic Fuzzy* \hat{g}^*Semi *Closed sets* namely *Intuitionistic Fuzzy* \hat{g}^*Semi *Open Mappings*. We also poster some essential comparative notions with other closed mappings and engage into a deeper analysis of their characterizations.

<u>Key Words:</u> Intuitionistic Fuzzy \hat{g}^* Semi Open set $(\mathcal{IF}\hat{g}^*\mathcal{SOS})$, Intuitionistic Fuzzy \hat{g}^* Semi Closed Mapping $(\mathcal{IF}\hat{g}^*\mathcal{SCM})$ and Intuitionistic Fuzzy \hat{g}^* Semi Open Mapping $(\mathcal{IF}\hat{g}^*\mathcal{SOM})$.

AMS Subject Classifications (2000): 54A40, 03F55

I. INTRODUCTION

Zadeh (1965)[15] with his invention of fuzzy sets began a new page in the history of Mathematics. Chang [2] made it a point to introduce fuzzy topology in 1967. Atanassov [1] led this to another level of generalization by his Intuitionistic Fuzzy Sets in 1986. Coker [3] constructed Intuitionistic Fuzzy Topological spaces. Intuitionistic fuzzy closed mapping was introduced and investigated by Gurcay et al. [6] in 1997. In 2000, Lee et al.[7] investigated the properties of open and closed mappings in intuitionistic fuzzy topological spaces. In recent past Pious Missier, Peter Arokiaraj and et.al [6] introduced Intuitionistic Fuzzy \hat{g}^* Semi closed sets in Intuitionistic Fuzzy Topological Spaces. Here we proceed to present our findings on *Intuitionistic Fuzzy Topological Spaces*.

II. PRELIMINARIES

Definition 2.1. [1] Let \mathbb{U} be a universal set. Then $\mathfrak{M}_{i\mathfrak{f}}=\{\langle \mathbb{u},\mu_{\mathfrak{M}_{i\mathfrak{f}}}(\mathbb{u}),\nu_{\mathfrak{M}_{i\mathfrak{f}}}(\mathbb{u})\rangle:\mathbb{u}\in\mathbb{U}\}$ is called as an intuitionistic fuzzy subset $(\mathcal{IFS}$ in short) in \mathbb{U} . Here the functions $\mu_{\mathfrak{M}_{i\mathfrak{f}}}:\mathbb{U}\to[0,1]$ and $\nu_{\mathfrak{M}_{i\mathfrak{f}}}:\mathbb{U}\to[0,1]$ denote the degree of membership (namely $\mu_{\mathfrak{M}_{i\mathfrak{f}}}(\mathbb{u})$) and the degree of non-membership (namely $\nu_{\mathfrak{M}_{i\mathfrak{f}}}(\mathbb{u})$) of each element $\mathbb{u}\in\mathbb{U}$ to the set $\mathfrak{M}_{i\mathfrak{f}}$ respectively and $0\leq\mu_{\mathfrak{M}_{i\mathfrak{f}}}(\mathbb{u})+\nu_{\mathfrak{M}_{i\mathfrak{f}}}(\mathbb{u})\leq 1$ for each $\mathbb{u}\in\mathbb{U}$. The set of all \mathcal{IFS} s in \mathbb{U} is denoted by $\mathcal{IFS}(\mathbb{U})$. For any two \mathcal{IFS} s $\mathfrak{M}_{i\mathfrak{f}}$ and $\mathfrak{N}_{i\mathfrak{f}}$, $(\mathfrak{M}_{i\mathfrak{f}}\cup\mathfrak{N}_{i\mathfrak{f}})^C=\mathfrak{M}_{i\mathfrak{f}}^C\cap\mathfrak{N}_{i\mathfrak{f}}^C$; $(\mathfrak{M}_{i\mathfrak{f}}\cap\mathfrak{N}_{i\mathfrak{f}})^C=\mathfrak{M}_{i\mathfrak{f}}^C\cup\mathfrak{N}_{i\mathfrak{f}}^C$.

Definition2.2: [1] If $\mathfrak{M}_{if} = \{\langle \mathfrak{u}, \mu_{\mathfrak{M}_{if}}(\mathfrak{u}), \upsilon_{\mathfrak{M}_{if}}(\mathfrak{u}) \rangle : \mathfrak{u} \in \mathbb{U} \}$ and $\mathfrak{N}_{if} = \{\langle \mathfrak{u}, \mu_{\mathfrak{N}_{if}}(\mathfrak{u}), \upsilon_{\mathfrak{N}_{if}}(\mathfrak{u}) \rangle : \mathfrak{u} \in \mathbb{U} \}$ be two $\mathcal{IFS}s(\mathbb{U})$, then

- (a) $\mathfrak{M}_{if} \subseteq \mathfrak{N}_{if}$ if and only if $\mu_{\mathfrak{M}_{if}}(\mathfrak{U}) \leq \mu_{\mathfrak{N}_{if}}(\mathfrak{U})$ and $\nu_{\mathfrak{M}_{if}}(\mathfrak{U}) \geq \nu_{\mathfrak{N}_{if}}(\mathfrak{U})$ for all $\mathfrak{U} \in \mathbb{U}$,
- (b) $\mathfrak{M}_{if} = \mathfrak{N}_{if}$ if and only if $\mathfrak{M}_{if} \subseteq \mathfrak{N}_{if}$ and $\mathfrak{M}_{if} \supseteq \mathfrak{N}_{if}$,
- (c) $\mathfrak{M}_{if}^{C} = \{ \langle \mathbf{u}, \mathbf{v}_{\mathfrak{M}_{if}}(\mathbf{u}), \mu_{\mathfrak{M}_{if}}(\mathbf{u}) \rangle : \mathbf{u} \in \mathbb{U} \}$ (complement of \mathfrak{M}_{if}),
- $(d) \ \mathfrak{M}_{i\mathfrak{f}} \cup \mathfrak{N}_{i\mathfrak{f}} = \{ \langle \ \mathfrak{U}, \ \mu_{\mathfrak{M}_{i\mathfrak{f}}} \ (\mathfrak{U}) \lor \mu_{\mathfrak{N}_{i\mathfrak{f}}} \ (\mathfrak{U}), \ \upsilon_{\mathfrak{M}_{i\mathfrak{f}}} \ (\mathfrak{U}) \land \upsilon_{\mathfrak{N}_{i\mathfrak{f}}} \ (\mathfrak{U}) \rangle \colon \mathfrak{U} \in \mathbb{U} \ \},$
- $(e) \ \mathfrak{M}_{i\mathfrak{f}} \cap \mathfrak{N}_{i\mathfrak{f}} = \{ \langle \ \mathfrak{U}, \ \mu_{\mathfrak{M}_{i\mathfrak{f}}}(\mathfrak{U}) \wedge \mu_{\mathfrak{N}_{i\mathfrak{f}}}(\mathfrak{U}), \ \upsilon_{\mathfrak{M}_{i\mathfrak{f}}}(\mathfrak{U}) \vee \upsilon_{\mathfrak{N}_{i\mathfrak{f}}}(\mathfrak{U}) \rangle \colon \mathfrak{U} \in \mathbb{U} \ \},$
- (f) $(\mathfrak{M}_{if} \cup \mathfrak{N}_{if})^{C} = \mathfrak{M}_{if}^{C} \cap \mathfrak{N}_{if}^{C}$ and $(\mathfrak{M}_{if} \cap \mathfrak{N}_{if})^{C} = \mathfrak{M}_{if}^{C} \cup \mathfrak{N}_{if}^{C}$.
- (h) $\tilde{\mathbf{0}} = \langle \mathbf{u}, 0, 1 \rangle$ (empty set) and $\tilde{\mathbf{1}} = \langle \mathbf{u}, 1, 0 \rangle$ (whole set).

Definition 2.3: [3] An intuitionistic fuzzy topology (\mathcal{IFT}) on \mathbb{U} is a family of $\mathcal{IFS}s$ in \mathbb{U} , satisfying the following axioms.

- 1. $\tilde{0}$, $\tilde{1} \in \tau_{if}$
- 2. $\mathfrak{M}_{if} \cap \mathfrak{N}_{if} \in \tau_{if}$ for any \mathfrak{M}_{if} , $\mathfrak{N}_{if} \in \tau_{if}$
- 3. $\cup \mathfrak{M}_{\mathfrak{if}_i} \in \tau_{\mathfrak{if}}$ for any family $\{\mathfrak{M}_{\mathfrak{if}_i} / i \in \mathcal{J}\} \subseteq \tau_{\mathfrak{if}}$.

The pair $(\mathbb{U}, \tau_{i\dagger})$ is called an intuitionistic fuzzy topological space (\mathcal{IFTS}) and any \mathcal{IFS} in $\tau_{i\dagger}$ is known as an intuitionistic fuzzy open set (\mathcal{IFOS}) in \mathbb{U} . The complement $(\mathfrak{M}_{i\dagger}^{C})$ of an \mathcal{IFOS} $\mathfrak{M}_{i\dagger}$ in an $\mathcal{IFTS}(\mathbb{U}, \tau_{i\dagger})$ is called an intuitionistic fuzzy closed set (\mathcal{IFCS}) in short in \mathbb{U} . In this paper, \mathcal{IF} interior is denoted by $int_{i\dagger}$ and \mathcal{IF} closure is denoted by $cl_{i\dagger}$.

Definition 2.4. [3] Let $(\mathbb{U}, \tau_{i \dagger})$ be an \mathcal{IFTS} and $\mathfrak{M}_{i \dagger} = \{\langle \mathbb{u}, \mu_{\mathfrak{M}_{i \dagger}}(\mathbb{u}), \upsilon_{\mathfrak{M}_{i \dagger}}(\mathbb{u}) \rangle : \mathbb{u} \in \mathbb{U} \}$ be an \mathcal{IFS} in \mathbb{U} . Then the interior and closure of the above \mathcal{IFS} are defined as follows:

- (i) $int_{if}(\mathfrak{M}_{if}) = \bigcup \{ \mathcal{G}_{if} \mid \mathcal{G}_{if} \text{ is an } \mathcal{IFOS} \text{ in } \mathbb{U} \text{ and } \mathcal{G}_{if} \subseteq \mathfrak{M}_{if} \}$
- (ii) $cl_{if}(\mathfrak{M}_{if}) = \bigcap \{\mathcal{K}_{if} \mid \mathcal{K}_{if} \text{ is an } \mathcal{IFCS} \text{ in } \mathbb{U} \text{ and } \mathfrak{M}_{if} \subseteq \mathcal{K}_{if} \}$

Definition 2.5. [15] $\mathcal{IF}w$ -closed set $(\mathcal{IF}w\mathcal{CS} \text{ in short})$ or $\mathcal{IF}\widehat{g}$ -closed $(\mathcal{IF}\widehat{g}\mathcal{CS} \text{ in short})$ if $cl_{i\dagger}(\mathcal{A}_{i\dagger})$ $\subseteq \mathcal{O}$ whenever $\mathcal{A}_{i\dagger} \subseteq \mathcal{O}_{i\dagger}$ and $\mathcal{O}_{i\dagger}$ is $\mathcal{IF}\mathcal{SO}$.

Definition 2.6. [10] An \mathcal{IFS} \mathfrak{M}_{if} of an \mathcal{IFTS} (\mathbb{U} , τ_{if}) is called an $\mathcal{IF}\widehat{g}^*s\mathcal{C}$, if $scl_{if}(\mathfrak{M}_{if}) \subseteq \mathcal{O}_{if}$ whenever $\mathfrak{M}_{if} \subseteq \mathcal{O}_{if}$ and \mathcal{O}_{if} is any $\mathcal{IF}\widehat{g}\mathcal{O}$ in (\mathbb{U} , τ_{if}).

Definition 2.7. [8] Let $f: (\mathbb{U}, \tau_{i\dagger}) \to (\mathbb{V}, \sigma_{i\dagger})$ be a mapping. Then f is said to be \mathcal{IFCM} if $f(\mathcal{N}_{i\dagger})$ is \mathcal{IFCS} in $(\mathbb{V}, \sigma_{i\dagger})$ for every \mathcal{IFCS} $\mathcal{N}_{i\dagger}$ in $(\mathbb{U}, \tau_{i\dagger})$.

Definition 2.8. Let $f:(\mathbb{U}, \tau_{if}) \to (\mathbb{V}, \sigma_{if})$ be a mapping. Then f is said to be

- (i) An $\mathcal{IFsCM}[11]$ if $f(\mathcal{N}_{if})$ is \mathcal{IFsC} in $(\mathbb{V}, \sigma_{if})$ for every \mathcal{IFCS} \mathcal{N}_{if} in (\mathbb{U}, τ_{if}) .
- (ii) An $\mathcal{IF}\alpha\mathcal{CM}$ [12] if $f(\mathcal{N}_{if})$ is $\mathcal{IF}\alpha\mathcal{C}$ in $(\mathbb{V}, \sigma_{if})$ for every \mathcal{IFCS} \mathcal{N}_{if} in (\mathbb{U}, τ_{if}) .
- (iii) An $\mathcal{IFg}^*\mathcal{CM}$ [9] if $f(\mathcal{N}_{if})$ is $\mathcal{IFg}^*\mathcal{C}$ in $(\mathbb{V}, \sigma_{if})$ for every \mathcal{IFCS} \mathcal{N}_{if} in (\mathbb{U}, τ_{if}) .
- (iv) An \mathcal{IFwCM} [12] or \mathcal{IF} \mathcal{GCM} if $f(\mathcal{N}_{if})$ is $\mathcal{IF}\mathcal{GC}$ in $(\mathbb{V}, \sigma_{if})$ for every \mathcal{IFCS} \mathcal{N}_{if} in (\mathbb{U}, τ_{if}) .
- (v) An $\mathcal{IFg}^*s\mathcal{CM}$ [9] if $f(\mathcal{N}_{if})$ is $\mathcal{IFg}^*s\mathcal{C}$ in $(\mathbb{V}, \sigma_{if})$ for every \mathcal{IFCS} \mathcal{N}_{if} in (\mathbb{U}, τ_{if}) .
- (vi) An $\mathcal{IF\Psi CM}$ [8] if $f(\mathcal{N}_{if})$ is $\mathcal{IF\Psi C}$ in (\mathbb{V} , σ_{if}) for every \mathcal{IFCS} \mathcal{N}_{if} in (\mathbb{U} , τ_{if}).

III. INTUITIONISTIC FUZZY \widehat{g}^* SEMI OPEN MAPPING IN INTUITIONISTIC FUZZY TOPOLOGICAL SPACES

Definition 3.1. Let $f: (\mathbb{U}, \tau_{if}) \to (\mathbb{V}, \sigma_{if})$ be a mapping. Then f is said to be $\mathcal{IF}\widehat{g}^* \mathcal{SOM}$ if $f(\mathfrak{M}_{if})$ is $\mathcal{IF}\widehat{g}^* \mathcal{SO}$ in $(\mathbb{V}, \sigma_{if})$ for every \mathcal{IFOS} \mathfrak{M}_{if} in (\mathbb{U}, τ_{if}) .

Example 3.2. Let $\mathbb{U} = \{e, \mathfrak{f}\}$, $\mathbb{V} = \{g, \mathfrak{h}\}$, $\tau_{i\mathfrak{f}} = \{\tilde{0}, \mathfrak{M}_{i\mathfrak{f}}, \tilde{1}\}$ and $\sigma_{i\mathfrak{f}} = \{\tilde{0}, \mathfrak{M}_{i\mathfrak{f}}, \tilde{1}\}$ where $\mathfrak{M}_{i\mathfrak{f}} = \{<e, 0.4, 0.6>, <\mathfrak{f}, 0.42, 0.58>\}$ and $\mathfrak{M}_{i\mathfrak{f}} = \{<g, 0.45, 0.55>, <\mathfrak{h}, 0.46, 0.54>\}$. Then $(\mathbb{U}, \tau_{i\mathfrak{f}})$ and $(\mathbb{V}, \sigma_{i\mathfrak{f}})$ \mathcal{IFTS} s. We define a mapping $f: (\mathbb{U}, \tau_{i\mathfrak{f}}) \to (\mathbb{V}, \sigma_{i\mathfrak{f}})$ by f(e) = g and $f(\mathfrak{f}) = \mathfrak{h}$. Then f is $\mathcal{IF}\widehat{g}^*\mathcal{SOM}$.

Theorem 3.3. The following statements are true.

- a) Every \mathcal{IFOM} is an $\mathcal{IF}\widehat{g}^* \mathcal{SOM}$.
- b) Every $\mathcal{IF}sO\mathcal{M}$ is an $\mathcal{IF}\widehat{g}^*sO\mathcal{M}$.
- c) Every $\mathcal{IF}\alpha\mathcal{OM}$ is an $\mathcal{IF}\widehat{g}^*\mathcal{SOM}$.
- d) Every $\mathcal{I}\mathcal{F}\Psi\mathcal{O}\mathcal{M}$ is an $\mathcal{I}\mathcal{F}\widehat{g}^*\mathcal{S}\mathcal{O}\mathcal{M}$.
- e) Every $\mathcal{IF}g^*\mathcal{OM}$ is an $\mathcal{IF}\widehat{g}^*\mathcal{SOM}$.
- f) Every $\mathcal{IF}q^*s\mathcal{OM}$ is an $\mathcal{IF}\widehat{q}^*s\mathcal{OM}$.

Proof:

(a) Let $f: (\mathbb{U}, \tau_{if}) \to (\mathbb{V}, \sigma_{if})$ be an \mathcal{IFCM} . Let \mathfrak{N}_{if} be an \mathcal{IFOS} in (\mathbb{U}, τ_{if}) . Since f is an \mathcal{IFOM} , $f(\mathfrak{N}_{if})$ is an \mathcal{IFO} set in $(\mathbb{V}, \sigma_{if})$. Since every \mathcal{IFOS} is an $\mathcal{IF}\widehat{g}^*sOS$, $f(\mathfrak{N}_{if})$ is an $\mathcal{IF}\widehat{g}^*sOS$ in $(\mathbb{V}, \sigma_{if})$. Hence f is an $\mathcal{IF}\widehat{g}^*sOM$.

The proofs for (b), (c), (d), (e) and (f) are similar because every $\mathcal{IF}sO$, $\mathcal{IF}\alphaO$, $\mathcal{IF}\PsiO$, $\mathcal{IF}g^*O$, and $\mathcal{IF}g^*sOS$ s are $\mathcal{IF}\widehat{g}^*sOS$.

Remark 3.4. The converse of the statements in the above theorem is not true. The examples below confirm them clearly.

Example 3.5. Let $\mathbb{U} = \{e, f, g\}$, $\mathbb{V} = \{h, i, j\}$, $\tau_{if} = \{\tilde{0}, \mathfrak{M}_{if}, \tilde{1}\}$ and $\sigma_{if} = \{\tilde{0}, \mathfrak{M}_{if}, \tilde{1}\}$ where $\mathfrak{M}_{if} = \{e, f, g\}$, $\mathbb{V} = \{h, i, j\}$, $\tau_{if} = \{\tilde{0}, \mathfrak{M}_{if}, \tilde{1}\}$ and $\sigma_{if} = \{\tilde{0}, \mathfrak{M}_{if}, \tilde{1}\}$ where $\mathfrak{M}_{if} = \{e, 0.4, 0.6>, e, 0.42, 0.58>, e, 0.41, 0.59>\}$ and $\mathfrak{M}_{if} = \{e, 0.4, 0.45, 0.55>, e, 0.46, 0.54>, e, 0.47, 0.53>\}$. Then (\mathbb{U}, τ_{if}) and $(\mathbb{V}, \sigma_{if})$ are \mathcal{IFTS} s. We define a mapping $f: (\mathbb{U}, \tau_{if}) \to (\mathbb{V}, \sigma_{if})$ by $f(e) = \{h, f(f) = i \text{ and } f(g) = j.$ Here, f is an $\mathcal{IF\mathfrak{DS}}$ but not an \mathcal{IFOM} , because \mathcal{IFS} $\mathfrak{M}_{if} = \{e, 0.4, 0.6>, e, f, 0.42, 0.58>, e, g, 0.41, 0.59>\}$ is an \mathcal{IFOS} in (\mathbb{U}, τ_{if}) but $f(\mathfrak{M}_{if})$ is not an \mathcal{IFOS} in $(\mathbb{U}, \sigma_{if})$.

Example 3.6. Let $\mathbb{U} = \{e, f, g\}$, $\mathbb{V} = \{h, i, j\}$, $\tau_{if} = \{\tilde{0}, \mathfrak{M}_{if}, \tilde{1}\}$ and $\sigma_{if} = \{\tilde{0}, \mathfrak{M}_{if}, \tilde{1}\}$ where $\mathfrak{M}_{if} = \{<e, 0.22, 0.72>, <f, 0.25, 0.68>, <g, 0.3, 0.69>\}$ and $\mathfrak{M}_{if} = \{<h, 0.4, 0.6>, <i, 0.46, 0.54>, <j, 0.47, 0.53>\}$. Then (\mathbb{U}, τ_{if}) and $(\mathbb{V}, \sigma_{if})$ are \mathcal{IFTS} s. We define a mapping $f: (\mathbb{U}, \tau_{if}) \to (\mathbb{V}, \sigma_{if})$ by f(e) = h, f(f) = i and f(g) = j. Then f is an $\mathcal{IF}\widehat{g}^*s\mathcal{OM}$ but not an \mathcal{IFsOM} , since \mathcal{IFS} $\mathfrak{M}_{if} = \{<e, 0.22, 0.72>, <f, 0.25, 0.68>, <g, 0.3, 0.69>\}$ is an \mathcal{IFO} set in (\mathbb{U}, τ_{if}) but $f(\mathfrak{M}_{if})$ is an $\mathcal{IF}\widehat{g}^*s\mathcal{OS}$ and not an \mathcal{IFsOS} in $(\mathbb{V}, \sigma_{if})$.

Example 3.7. Let $\mathbb{U} = \{e, f, g\}$, $\mathbb{V} = \{h, i, j\}$, $\tau_{if} = \{\tilde{0}, \mathfrak{M}_{if}, \tilde{1}\}$ and $\sigma_{if} = \{\tilde{0}, \mathfrak{M}_{if}, \tilde{1}\}$ where $\mathfrak{M}_{if} = \{e, 0.5, 0.48\}$, e, 0.6, 0.49, e, 0.478 e, 0.52 and $\mathfrak{M}_{if} = \{e, 0.46, 0.52\}$, e, 0.34, $e, 0.65\}$, e, 0.42, $e, 0.58\}$. Then (\mathbb{U}, τ_{if}) and $(\mathbb{V}, \sigma_{if})$ are \mathcal{IFTS} s. We define a mapping $f: (\mathbb{U}, \tau_{if}) \to (\mathbb{V}, \sigma_{if})$ by f(e) = h, f(f) = i and f(g) = j. Then f is an f, g and f but not an f, g set in f, g but f(g, g) is an f, g and g a

Example 3.8. Let $\mathbb{U} = \{e, f, g\}$, $\mathbb{V} = \{h, i, j\}$, $\tau_{if} = \{\tilde{0}, \mathfrak{M}_{if}, \tilde{1}\}$ and $\sigma_{if} = \{\tilde{0}, \mathfrak{M}_{if}, \tilde{1}\}$ where $\mathfrak{M}_{if} = \{e, 0.4, 0.6 >, e, 0.3, 0.7 >, e, 0.28, 0.71 >\}$ and $\mathfrak{M}_{if} = \{e, 0.4, 0.41, 0.59 >, e, 0.34, 0.66 >, e, 0.32, 0.68 >\}$. Then (\mathbb{U}, τ_{if}) and $(\mathbb{V}, \sigma_{if})$ are \mathcal{IFTS} s. We define a mapping $f: (\mathbb{U}, \tau_{if}) \to (\mathbb{V}, \sigma_{if})$ by f(e) = h, f(f) = i and f(g) = j. Then f is an $\mathcal{IF}\widehat{g}^*s\mathcal{OM}$ but not an $\mathcal{IF\PsiOM}$, since $\mathcal{IFS} \mathfrak{M}_{if} = \{e, 0.4, 0.6 >, e, f, 0.3, 0.7 >, e, g, 0.28, 0.71 >\}$ is an \mathcal{IFOS} in (\mathbb{U}, τ_{if}) but $f(\mathfrak{M}_{if})$ is an $\mathcal{IF}\widehat{g}^*s\mathcal{OS}$ and not an $\mathcal{IF\PsiOS}$ in $(\mathbb{V}, \sigma_{if})$.

Example 3.9. Let $\mathbb{U} = \{e, \mathfrak{f}, \mathfrak{g}\}, \mathbb{V} = \{\mathfrak{h}, \mathfrak{i}, \mathfrak{j}\}, \tau_{\mathfrak{i}\mathfrak{f}} = \{\tilde{0}, \mathfrak{M}_{\mathfrak{i}\mathfrak{f}}, \tilde{1}\} \text{ and } \sigma_{\mathfrak{i}\mathfrak{f}} = \{\tilde{0}, \mathfrak{N}_{\mathfrak{i}\mathfrak{f}}, \tilde{1}\} \text{ where } \mathfrak{M}_{\mathfrak{i}\mathfrak{f}} = \{<e, 0.45, 0.55>, <\mathfrak{f}, 0.6, 0.4>, <\mathfrak{g}, 0.5 0.4>\} \text{ and } \mathfrak{N}_{\mathfrak{i}\mathfrak{f}} = \{<\mathfrak{h}, 0.4, 0.6>, <\mathfrak{i}, 0.3, 0.7>, <\mathfrak{f}, 0.2, 0.8>\}.$ Then $(\mathbb{U}, \tau_{\mathfrak{i}\mathfrak{f}})$ and $(\mathbb{V}, \sigma_{\mathfrak{i}\mathfrak{f}})$ are \mathcal{IFTS} s. We define a mapping $f: (\mathbb{U}, \tau_{\mathfrak{i}\mathfrak{f}}) \to (\mathbb{V}, \sigma_{\mathfrak{i}\mathfrak{f}})$ by $f(e) = \mathfrak{h}, f(\mathfrak{f}) = \mathfrak{i}$ and $f(\mathfrak{g}) = \mathfrak{j}$. Then f is an $\mathcal{IF}\widehat{g}^*s\mathcal{OM}$ but not an $\mathcal{IF}\mathfrak{g}^*\mathcal{OM}$, since \mathcal{IFS} $\mathfrak{M}_{\mathfrak{i}\mathfrak{f}} = \{<e, 0.45, 0.55>, <\mathfrak{f}, 0.6, 0.4>, <\mathfrak{g}, 0.5 0.4>\}$ is an \mathcal{IFOS} in $(\mathbb{U}, \tau_{\mathfrak{i}\mathfrak{f}})$ but $f(\mathfrak{M}_{\mathfrak{i}\mathfrak{f}})$ is an $\mathcal{IF}\widehat{g}^*s\mathcal{OS}$ and not an $\mathcal{IF}\mathfrak{g}^*\mathcal{OS}$ in $(\mathbb{V}, \sigma_{\mathfrak{i}\mathfrak{f}})$.

Example 3.10. Let $\mathbb{U} = \{e, \mathfrak{f}, \mathfrak{g}\}$, $\mathbb{V} = \{\mathfrak{h}, \mathfrak{i}, \mathfrak{j}\}$, $\tau_{\mathfrak{i}\mathfrak{f}} = \{\tilde{0}, \mathfrak{M}_{\mathfrak{i}\mathfrak{f}}, \tilde{1}\}$ and $\sigma_{\mathfrak{i}\mathfrak{f}} = \{\tilde{0}, \mathfrak{M}_{\mathfrak{i}\mathfrak{f}}, \tilde{1}\}$ where $\mathfrak{M}_{\mathfrak{i}\mathfrak{f}} = \{<e, 0.55, 0.20>, <f, 0.6, 0.4>, <g, 0.72 0.28>\}$ and $\mathfrak{N}_{\mathfrak{i}\mathfrak{f}} = \{<\mathfrak{h}, 0.25, 0.75>, <\mathfrak{i}, 0.3, 0.7>, <\mathfrak{f}, 0.27, 0.73>\}$. Then $(\mathbb{U}, \tau_{\mathfrak{i}\mathfrak{f}})$ and $(\mathbb{V}, \sigma_{\mathfrak{i}\mathfrak{f}})$ are $\mathcal{IFTS}s$. We define a mapping $f(\mathbb{U}, \tau_{\mathfrak{i}\mathfrak{f}}) \to (\mathbb{V}, \sigma_{\mathfrak{i}\mathfrak{f}})$ by $f(e) = \mathfrak{h}, f(\mathfrak{f}) = \mathfrak{i}$ and $f(\mathfrak{g}) = \mathfrak{f}$. Then f is an $\mathcal{IF}\mathfrak{F}^*s\mathcal{OM}$ but not an $\mathcal{IF}\mathfrak{F}^*s\mathcal{OM}$, since \mathcal{IFS} $\mathfrak{M}_{\mathfrak{i}\mathfrak{f}} = \{<e, 0.55, 0.20>, <\mathfrak{f}, 0.6, 0.4>, <g, 0.72 0.28>\}$ is an \mathcal{IFOS} in $(\mathbb{U}, \tau_{\mathfrak{i}\mathfrak{f}})$ but $f(\mathfrak{M}_{\mathfrak{i}\mathfrak{f}})$ is an $\mathcal{IF}\mathfrak{F}^*s\mathcal{OS}$ and not an $\mathcal{IF}\mathfrak{F}^*s\mathcal{OS}$ in $(\mathbb{V}, \sigma_{\mathfrak{i}\mathfrak{f}})$.

Remark. 3.11: $\mathcal{IF}\widehat{g}^*s\mathcal{OM}$ and $\mathcal{IF}\widehat{g}\mathcal{OM}$ are independent. The examples given below testify it.

Example 3.12. Let $\mathbb{U} = \{e, \mathfrak{f}, \mathfrak{g}\}$, $\mathbb{V} = \{\mathfrak{h}, \mathfrak{i}, \mathfrak{j}\}$, $\tau_{\mathfrak{i}\mathfrak{f}} = \{\tilde{0}, \mathfrak{M}_{\mathfrak{i}\mathfrak{f}}, \tilde{1}\}$ and $\sigma_{\mathfrak{i}\mathfrak{f}} = \{\tilde{0}, \mathfrak{M}_{\mathfrak{i}\mathfrak{f}}, \tilde{1}\}$ where $\mathfrak{M}_{\mathfrak{i}\mathfrak{f}} = \{<e, 0.3, 0.7>, <f, 0.4, 0.6>, <g, 0.25 0.75>\}$ and $\mathfrak{N}_{\mathfrak{i}\mathfrak{f}} = \{<\mathfrak{h}, 0.2, 0.78>, <\mathfrak{i}, 0.3, 0.7>, <\mathfrak{f}, 0.22, 0.78>\}$. Then $(\mathbb{U}, \tau_{\mathfrak{i}\mathfrak{f}})$ and $(\mathbb{V}, \sigma_{\mathfrak{i}\mathfrak{f}})$ are $\mathcal{IFTS}s$. We define a mapping $f: (\mathbb{U}, \tau_{\mathfrak{i}\mathfrak{f}}) \to (\mathbb{V}, \sigma_{\mathfrak{i}\mathfrak{f}})$ by $f(e) = \mathfrak{h}, f(\mathfrak{f}) = \mathfrak{i}$ and $f(g) = \mathfrak{j}$. Then $f(\mathfrak{M}_{\mathfrak{i}\mathfrak{f}})$ is an $\mathcal{IF\mathfrak{g}}^*s\mathcal{O}$ set in $(\mathbb{V}, \sigma_{\mathfrak{i}\mathfrak{f}})$ and not an $\mathcal{IF\mathfrak{g}}\mathcal{O}$ set in $(\mathbb{V}, \sigma_{\mathfrak{i}\mathfrak{f}})$ where $\mathfrak{M}_{\mathfrak{i}\mathfrak{f}} = \{<e, 0.3, 0.7>, <\mathfrak{f}, 0.4, 0.6>, <g, 0.25 0.75>\}$ is an \mathcal{IFOS} set in $(\mathbb{U}, \tau_{\mathfrak{i}\mathfrak{f}})$. Therefore f is an $\mathcal{IF\mathfrak{g}}^*s\mathcal{OM}$ but not an $\mathcal{IF\mathfrak{g}}\mathcal{OM}$.

Example 3.13. Let $\mathbb{U} = \{e, \mathfrak{f}, \mathfrak{g}\}$, $\mathbb{V} = \{\mathfrak{h}, \mathfrak{i}, \mathfrak{j}\}$, $\tau_{\mathfrak{i}\mathfrak{f}} = \{\tilde{0}, \mathfrak{M}_{\mathfrak{i}\mathfrak{f}}, \tilde{1}\}$ and $\sigma_{\mathfrak{i}\mathfrak{f}} = \{\tilde{0}, \mathfrak{M}_{\mathfrak{i}\mathfrak{f}}, \tilde{1}\}$ where $\mathfrak{M}_{\mathfrak{i}\mathfrak{f}} = \{<e, 0.22, 0.78>, <f, 0.7, 0.3>, <g, 0.35, 0.65>\}$ and $\mathfrak{M}_{\mathfrak{i}\mathfrak{f}} = \{<\mathfrak{h}, 0.3, 0.7>, <\mathfrak{i}, 0.4, 0.6>, <\mathfrak{f}, 0.37, 0.6>\}$. Then $(\mathbb{U}, \tau_{\mathfrak{i}\mathfrak{f}})$ and $(\mathbb{V}, \sigma_{\mathfrak{i}\mathfrak{f}})$ are \mathcal{IFTS} s. We define a mapping $f(\mathbb{U}, \tau_{\mathfrak{i}\mathfrak{f}}) \to (\mathbb{V}, \sigma_{\mathfrak{i}\mathfrak{f}})$ by $f(e) = \mathfrak{h}, f(\mathfrak{f}) = \mathfrak{i}$ and $f(\mathfrak{g}) = \mathfrak{f}$. Then $f(\mathfrak{M}_{\mathfrak{i}\mathfrak{f}})$ is an \mathcal{IFGOS} in $(\mathbb{V}, \sigma_{\mathfrak{i}\mathfrak{f}})$ and not an \mathcal{IFG}^*sos in $(\mathbb{V}, \sigma_{\mathfrak{i}\mathfrak{f}})$ where $\mathfrak{M}_{\mathfrak{i}\mathfrak{f}} = \{<e, 0.22, 0.78>, <\mathfrak{f}, 0.7, 0.3>, <g, 0.35, 0.65>\}$ is an \mathcal{IFOS} in $(\mathbb{U}, \tau_{\mathfrak{i}\mathfrak{f}})$. Therefore f is an \mathcal{IFGOM} but not an \mathcal{IFG}^*sosM .

The diagram below depicts the interrelationship of $\mathcal{IF} \widehat{\boldsymbol{g}}^* \mathcal{SOM}$ with some of the other \mathcal{IF} mappings.

Theorem 3.14. If $f: (\mathbb{U}, \tau_{if}) \to (\mathbb{V}, \sigma_{if})$ is an $\mathcal{IF}\widehat{g}^* \mathcal{SOM}$ then $int_{if} (f^{-1}(\mathfrak{M}_{if})) \subseteq f^{-1}(\widehat{g}^* \mathcal{Sint}_{if}(\mathfrak{M}_{if}))$ for every $\mathcal{IFS} \mathfrak{M}_{if}$ of $(\mathbb{V}, \sigma_{if})$.

Proof: Let \mathfrak{M}_{if} be an \mathcal{IFS} of $(\mathbb{V}, \sigma_{if})$. Then $int_{if}(f^{-1}(\mathfrak{M}_{if}))$ is an \mathcal{IFOS} in (\mathbb{U}, τ_{if}) . Since f is an $\mathcal{IF}\widehat{\mathcal{G}}^*so\mathcal{M}$, $f(int_{if}(f^{-1}(\mathfrak{M}_{if})))$ is an $\mathcal{IF}\widehat{\mathcal{G}}^*so\mathcal{S}$ in $(\mathbb{V}, \sigma_{if})$. And hence $f(int_{if}(f^{-1}(\mathfrak{M}_{if}))) \subseteq \widehat{\mathcal{G}}^*sint_{if}(f(f^{-1}(\mathfrak{M}_{if}))) \subseteq \widehat{\mathcal{G}}^*sint_{if}(\mathfrak{M}_{if})$. Thus $int_{if}(f^{-1}(\mathfrak{M}_{if})) \subseteq f^{-1}(\widehat{\mathcal{G}}^*sint_{if}(\mathfrak{M}_{if}))$.

Theorem 3.15. A mapping $f: (\mathbb{U}, \tau_{if}) \to (\mathbb{V}, \sigma_{if})$ is an $\mathcal{IF}\widehat{g}^*s\mathcal{O}$ iff for every \mathcal{IFOS} \mathfrak{M}_{if} of (\mathbb{U}, τ_{if}) , $f(int_{if}(\mathfrak{M}_{if})) \subseteq \widehat{g}^*sint_{if}(f(\mathfrak{M}_{if}))$.

Proof: Necessity: Let $f: (\mathbb{U}, \tau_{i\dagger}) \to (\mathbb{V}, \sigma_{i\dagger})$ be an $\mathcal{IF}\widehat{g}^*sOM$ and $\mathfrak{M}_{i\dagger}$ is an \mathcal{IFOS} in $(\mathbb{U}, \tau_{i\dagger})$. Now $int_{i\dagger}(\mathfrak{M}_{i\dagger}) = \mathfrak{M}_{i\dagger}$ which implies that $f(int_{i\dagger}(\mathfrak{M}_{i\dagger})) \subseteq f(\mathfrak{M}_{i\dagger})$. Since f is an $\mathcal{IF}\widehat{g}^*sOM$, $f(int_{i\dagger}(\mathfrak{M}_{i\dagger}))$ is $\mathcal{IF}\widehat{g}^*sO$ in $(\mathbb{V}, \sigma_{i\dagger})$ such that $f(int_{i\dagger}(\mathfrak{M}_{i\dagger})) \subseteq f(\mathfrak{M}_{i\dagger})$. Therefore $f(int_{i\dagger}(\mathfrak{M}_{i\dagger})) \subseteq \widehat{g}^*sint_{i\dagger}(f(\mathfrak{M}_{i\dagger}))$.

Sufficiency: Suppose that \mathfrak{M}_{if} is an \mathcal{IFOS} of (\mathbb{U}, τ_{if}) . Then $f(\mathfrak{M}_{if}) = f(int_{if}(\mathfrak{M}_{if})) \subseteq \widehat{g}^*sint_{if}(f(\mathfrak{M}_{if}))$. But $\widehat{g}^*sint_{if}(f(\mathfrak{M}_{if})) \subseteq f(\mathfrak{M}_{if})$. Consequently $f(\mathfrak{M}_{if}) = \widehat{g}^*sint_{if}(f(\mathfrak{M}_{if})) \Rightarrow f(\mathfrak{M}_{if})$ is an $\mathcal{IF}\widehat{g}^*sos$ of $(\mathbb{V}, \sigma_{if})$ and hence f is an $\mathcal{IF}\widehat{g}^*sos$.

Theorem 3.16. A bijective mapping $f: (\mathbb{U}, \tau_{i\dagger}) \to (\mathbb{V}, \sigma_{i\dagger})$ is $\mathcal{IF}\widehat{g}^*s\mathcal{OM}$ iff for every \mathcal{IFS} $\mathfrak{N}_{i\dagger}$ of $(\mathbb{V}, \sigma_{i\dagger})$ and for every \mathcal{IFCS} $\mathcal{H}_{i\dagger}$ in $(\mathbb{U}, \tau_{i\dagger})$ containing $f^{-1}(\mathfrak{N}_{i\dagger})$, there is an $\mathcal{IF}\widehat{g}^*s\mathcal{CS}$ $\mathfrak{M}_{i\dagger}$ of $(\mathbb{V}, \sigma_{i\dagger})$ such that $\mathfrak{N}_{i\dagger} \subseteq \mathfrak{M}_{i\dagger}$ and $f^{-1}(\mathfrak{M}_{i\dagger}) \subseteq \mathcal{H}_{i\dagger}$.

Proof. Necessity: Let \mathfrak{N}_{if} be any \mathcal{IFS} in $(\mathbb{V}, \sigma_{if})$. Let \mathcal{H}_{if} be \mathcal{IFCS} in (\mathbb{U}, τ_{if}) such that $f^{-1}(\mathfrak{N}_{if}) \subseteq \mathcal{H}_{if}$, then $\mathcal{H}_{if}^{\mathsf{C}}$ is an \mathcal{IFOS} in (\mathbb{U}, τ_{if}) . By given condition $f(\mathcal{H}_{if}^{\mathsf{C}})$ is $\mathcal{IF}\widehat{g}^*s\mathcal{OS}$ in $(\mathbb{V}, \sigma_{if})$. Let $\mathfrak{M}_{if} = (f(\mathcal{H}_{if}^{\mathsf{C}}))^{\mathsf{C}}$, then \mathfrak{M}_{if} is an $\mathcal{IF}\widehat{g}^*s\mathcal{CS}$ in $(\mathbb{V}, \sigma_{if})$ and $\mathfrak{N}_{if} \subseteq \mathfrak{M}_{if}$, since for a bijective mapping $(f(\mathcal{H}_{if}^{\mathsf{C}}))^{\mathsf{C}} = f(\mathcal{H}_{if})$. Now $f^{-1}(\mathfrak{M}_{if}) = f^{-1}(f(\mathcal{H}_{if}^{\mathsf{C}}))^{\mathsf{C}} = (f^{-1}(f(\mathcal{H}_{if}^{\mathsf{C}})))^{\mathsf{C}} \subseteq \mathcal{H}_{if}$.

Sufficiency: Let \mathfrak{M}_{if} be any \mathcal{IFOS} in (\mathbb{U}, τ_{if}) , then \mathfrak{M}_{if}^{C} is an \mathcal{IFCS} in (\mathbb{U}, τ_{if}) and $f^{-1}(f(\mathfrak{M}_{if}^{C})) \subseteq \mathfrak{M}_{if}^{C}$. By given condition there exists an $\mathcal{IF}\widehat{g}^*\mathcal{SCS}$ \mathfrak{N}_{if} in $(\mathbb{V}, \sigma_{if})$ such that $f(\mathfrak{M}_{if}^{C}) \subseteq \mathfrak{N}_{if}$ and $f^{-1}(\mathfrak{N}_{if}) \subseteq \mathfrak{M}_{if}^{C}$. Hence $\mathfrak{N}_{if}^{C} \subseteq f(\mathfrak{M}_{if}) \subseteq f(f^{-1}(\mathfrak{N}_{if}))^{C} \subseteq (f(f^{-1}(\mathfrak{N}_{if})))^{C} \subseteq \mathfrak{N}_{if}^{C}$. This implies that $f(\mathfrak{M}_{if}) = \mathfrak{N}_{if}^{C}$. Since \mathfrak{N}_{if}^{C} is an $\mathcal{IF}\widehat{g}^*\mathcal{SOS}$, $f(\mathfrak{M}_{if})$ is an $\mathcal{IF}\widehat{g}^*\mathcal{SOS}$ in $(\mathbb{V}, \sigma_{if})$. Hence f is an $\mathcal{IF}\widehat{g}^*\mathcal{SOM}$.

Theorem 3.17. If $f: (\mathbb{U}, \tau_{if}) \to (\mathbb{V}, \sigma_{if})$ is an \mathcal{IFOM} and $g: (\mathbb{V}, \sigma_{if}) \to (\mathbb{W}, \eta_{if})$ is $\mathcal{IF}\widehat{g}^* \mathcal{SOM}$ then $g \circ f: (\mathbb{U}, \tau_{if}) \to (\mathbb{W}, \eta_{if})$ is $\mathcal{IF}\widehat{g}^* \mathcal{SOM}$.

Proof: Let \mathfrak{M}_{if} be an \mathcal{IFOS} in (\mathbb{U}, τ_{if}) Then by given condition, $f(\mathfrak{M}_{if})$ is \mathcal{IFOS} in $(\mathbb{V}, \sigma_{if})$. Also given that $g: (\mathbb{V}, \sigma_{if}) \to (\mathbb{W}, \eta_{if})$ is an $\mathcal{IF}\widehat{g}^*\mathcal{SOM}$. This implies $g(f(\mathfrak{M}_{if})) = (g \circ f)(\mathfrak{M}_{if})$ is $\mathcal{IF}\widehat{g}^*\mathcal{SOS}$ in (\mathbb{W}, η_{if}) . Hence $g \circ f: (\mathbb{U}, \tau_{if}) \to (\mathbb{W}, \eta_{if})$ is an $\mathcal{IF}\widehat{g}^*\mathcal{SOM}$.

Theorem 3.18. Let $f: (\mathbb{U}, \tau_{if}) \to (\mathbb{V}, \sigma_{if})$ and $g: (\mathbb{V}, \sigma_{if}) \to (\mathbb{W}, \eta_{if})$ be two mappings and let $g \circ f: (\mathbb{U}, \tau_{if}) \to (\mathbb{W}, \eta_{if})$ be $\mathcal{IF}\widehat{g}^*s\mathcal{OM}$. Then

(a) If g is irresolute and injective, then f is $\mathcal{IF}\widehat{g}^*sOM$.

(b) If f is $\mathcal{IF}\widehat{g}^*s - cont.$, surjective and (\mathbb{U}, τ_{if}) is an $\mathcal{IF}\widehat{g}^*s$ space, then g is $\mathcal{IF}\widehat{g}^*s\mathcal{OM}$.

Proof: (a) Let \mathfrak{N}_{if} be an \mathcal{IFOS} in (\mathbb{U}, τ_{if}) . Then $(g \circ f)(\mathfrak{N}_{if})$ is $\mathcal{IF}\widehat{g}^*s\mathcal{O}$ in (\mathbb{W}, η_{if}) and $g^{-1}((g \circ f)(\mathfrak{N}_{if}))) = f(\mathfrak{N}_{if})$ is $\mathcal{IF}\widehat{g}^*s\mathcal{O}$ in $(\mathbb{V}, \sigma_{if})$ (since g is irresolute). Hence f is $\mathcal{IF}\widehat{g}^*s\mathcal{OM}$.

(b) Let \mathfrak{N}_{if} be an \mathcal{IFOS} in $(\mathbb{V}, \sigma_{if})$ Then $f^{-1}(\mathfrak{N}_{if})$ is $\mathcal{IF}\widehat{g}^*s\mathcal{O}$ in (\mathbb{U}, τ_{if}) and $(g \circ f)(f^{-1}(\mathfrak{N}_{if})) = g(\mathfrak{N}_{if})$, which is $\mathcal{IF}\widehat{g}^*s\mathcal{O}$ in (\mathbb{W}, η_{if}) Hence g is $\mathcal{IF}\widehat{g}^*s\mathcal{OM}$.

Theorem 3.19. A mapping $f: (\mathbb{U}, \tau_{if}) \to (\mathbb{V}, \sigma_{if})$ is an $\mathcal{IF}\widehat{g}^* \mathcal{SO}$ mapping if $f(\widehat{g}^* \mathcal{Sint}_{if}(\mathfrak{M}_{if})) \subseteq \widehat{g}^* \mathcal{Sint}_{if}(f(\mathfrak{M}_{if}))$ for every $\mathfrak{M}_{if} \in (\mathbb{U}, \sigma_{if})$.

Proof: Let \mathfrak{M}_{if} be an \mathcal{IFOS} in $(\mathbb{U}, \sigma_{if})$. Then $int_{if}(\mathfrak{M}_{if}) = \mathfrak{M}_{if}$. Now $f(\mathfrak{M}_{if}) = f(int_{if}(\mathfrak{M}_{if})) \subseteq f(\widehat{\mathfrak{g}}^*sint_{if}(f(\mathfrak{M}_{if})) \subseteq \widehat{\mathfrak{g}}^*sint_{if}(f(\mathfrak{M}_{if}))$, by hypothesis. But $\widehat{\mathfrak{g}}^*sint_{if}(f(\mathfrak{M}_{if})) \subseteq f(\mathfrak{M}_{if})$. Therefore $f(\mathfrak{M}_{if})$ is an $\mathcal{IF}\widehat{\mathfrak{g}}^*sos$ in $(\mathbb{V}, \sigma_{if})$. Hence f is an $\mathcal{IF}\widehat{\mathfrak{g}}^*sss$ mapping.

Definition 3.20. An \mathcal{IFTS} ($\mathbb{U}, \tau_{i\dagger}$) is called $\mathcal{IF}\widehat{g}^*$ semi $T^*_{1/2}$ space ($\mathcal{IF}\widehat{g}^* \mathcal{S} T^*_{1/2}$ space) if every $\mathcal{IF}\widehat{g}^* \mathcal{SOS}$ is \mathcal{IFOS} in ($\mathbb{U}, \tau_{i\dagger}$).

Theorem 3.21. A mapping $f: (\mathbb{U}, \tau_{i\dagger}) \to (\mathbb{V}, \sigma_{i\dagger})$ is an $\mathcal{IF}\widehat{g}^*s\mathcal{O}$ mapping iff $int_{i\dagger}(f^{-1}(\mathfrak{N}_{i\dagger})) \subseteq f^{-1}(int_{i\dagger}(\mathfrak{N}_{i\dagger}))$ for every $\mathfrak{N}_{i\dagger} \in (\mathbb{V}, \sigma_{i\dagger})$, where $(\mathbb{V}, \sigma_{i\dagger})$ is an $\mathcal{IF}\widehat{g}^*s\mathcal{T}^*_{1/2}$ space.

Proof: Necessary Part: Let $\mathfrak{R}_{i\mathfrak{f}} \in (\mathbb{V}, \sigma_{i\mathfrak{f}})$. Then $f^{-1}(\mathfrak{R}_{i\mathfrak{f}}) \subseteq (\mathbb{U}, \tau_{i\mathfrak{f}})$ and $int_{i\mathfrak{f}}(f^{-1}(\mathfrak{R}_{i\mathfrak{f}}))$ is an \mathcal{IFOS} in $(\mathbb{U}, \tau_{i\mathfrak{f}})$. By Hypothesis, $f(int_{i\mathfrak{f}}(f^{-1}(\mathfrak{R}_{i\mathfrak{f}})))$ is an $\mathcal{IF}\widehat{\mathcal{G}}^*\mathcal{SOS}$ in $(\mathbb{V}, \sigma_{i\mathfrak{f}})$. Since $(\mathbb{V}, \sigma_{i\mathfrak{f}})$ is an $\mathcal{IF}\widehat{\mathcal{G}}^*\mathcal{S}$ $T^*_{1/2}$ space, $f(int_{i\mathfrak{f}}(f^{-1}(\mathfrak{R}_{i\mathfrak{f}})))$ is an \mathcal{IFOS} in $(\mathbb{V}, \tau_{i\mathfrak{f}})$. Therefore $f(int_{i\mathfrak{f}}(f^{-1}(\mathfrak{R}_{i\mathfrak{f}}))) = int_{i\mathfrak{f}}(f(int_{i\mathfrak{f}}(f^{-1}(\mathfrak{R}_{i\mathfrak{f}})))) \subseteq int_{i\mathfrak{f}}(f(f^{-1}(\mathfrak{R}_{i\mathfrak{f}}))) \subseteq int_{i\mathfrak{f}}(f(int_{i\mathfrak{f}}(f^{-1}(\mathfrak{R}_{i\mathfrak{f}})))) \subseteq f^{-1}(int_{i\mathfrak{f}}(\mathfrak{R}_{i\mathfrak{f}}))$.

Sufficient Part: Let \mathfrak{M}_{if} be an \mathcal{IFOS} in (\mathbb{U}, τ_{if}) . Therefore $int_{if}(\mathfrak{M}_{if}) = \mathfrak{M}_{if}$. Then $f(\mathfrak{M}_{if}) \subseteq (\mathbb{V}, \tau_{if})$. By hypothesis $int_{if}(f^{-1}(f(\mathfrak{M}_{if}))) \subseteq f^{-1}(int_{if}(f(\mathfrak{M}_{if})))$. That is $int_{if}(\mathfrak{M}_{if}) \subseteq int_{if}(f^{-1}(f(\mathfrak{M}_{if}))) \subseteq f^{-1}(int_{if}(f(\mathfrak{M}_{if})))$. Therefore $\mathfrak{M}_{if} \subseteq f^{-1}(int_{if}(f(\mathfrak{M}_{if})))$. This implies $f(\mathfrak{M}_{if}) \subseteq f(f^{-1}(int_{if}(f(\mathfrak{M}_{if})))) \subseteq int_{if}(f(\mathfrak{M}_{if})) \subseteq f(\mathfrak{M}_{if})$. Hence $f(\mathfrak{M}_{if})$ is an \mathcal{IFOS} in (\mathbb{V}, τ_{if}) and hence an $\mathcal{IF}\mathfrak{F}^*$ so \mathcal{S} in $(\mathbb{V}, \sigma_{if})$. Thus f is an $\mathcal{IF}\mathfrak{F}^*$ so \mathcal{S} mapping.

REFERENCES

- [1] Atanassov, K.T. Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 1986, 87-96.
- [2] Chang. C.L, Fuzzy topological spaces, J. Math. Anal. and Appl., 24(1), 1968, 182-190.
- [3] Coker. D, An introduction to intuitionistic fuzzy topological spaces, Fuzzy sets and systems, 88, 1997, 81-89.
- [4] Coker. D, An introduction to fuzzy subspaces in intuitionistic fuzzy topological spaces, The Jour. Fuzzy Math., 4, 1996, 749-764.
- [5] Coker, D., and Demirci, M., "On Intuitionistic Fuzzy Points", Notes on intuitionistic fuzzy sets, 1995, 79-84.

China Petroleum Processing and Petrochemical Technology

Catalyst Research Volume 23, Issue 2, December 2023 Pp. 4905-4912

- [6] Gurcay, H., Coker. D., and Haydar, A., On fuzzy continuity in intuitionistic fuzzy topological spaces, jour. of fuzzy math., 5 (1997), 365-378.
- [7] Lee. J. L, et al., Intuitionistic continuous, closed and open mappings, Annals of Fuzzy Mathematics and Informatics Volume x, No. x, (Month 201y), pp. 1–xx
- [8] Noiri. T, A generalization of closed mappings, Atti. Acad. Naz. Lincei rend. Cl. Ser. Fis Mat. Natur., 54, 1973, 412-415.
- [9] Pious Missier S, Babisha Julit R. L, "On Intuitionistic Fuzzy g^* s Closed Mappings," RTMM-2021 (pages 164-173).
- [10] Pious Missier S, Peter Arokiaraj A, A. Nagarajan & S.Jackson, Intuitionistic Fuzzy \widehat{g}^* Semi Closed and Open Sets in Intuitionistic Fuzzy Topological Spaces, Kanpur Publications, ISSSN 2348-8301, Vol. X, Issue I(B):2023, 122-128.
- [11] Santhi and D. Jayanthi, "Intuitionistic fuzzy generalized semi pre-closed mappings", Journal of Informatics and Mathematical Sciences", NIFS 16(2010), 3, 28-39.
- [12] Santhi. R and K.Sakthivel. K, Alpha generalized closed mappings in intuitionistic fuzzy topological spaces, Far East Journal of Mathematical Sciences, 43(2010), 265-275.
- [13] Thakur S.S. and Chaturvedi R., 2008, "Generalized closed set in intuitionistic fuzzy topology", The journal of Fuzzy Mathematics 16(3), pp, 559-572.
- [14] Thakur S. S and Jyothi pandey Bajpey, Intuitionistic fuzzy g open and g closed mapping, Vikram mathematical journal, 2007, 35-42.
- [15] Thakur S.S and Jyothi pandey Bajpey, 2010, "Intuitionistic fuzzy w-closed sets and intuitionistic fuzzy w-continuity", International Journal of Contemporary Advanced Mathematics, 1(1), pp. 1-15
- [16] Zadeh L.A, Fuzzy sets, Information and control, 8, 1965, 338-353.