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Abstract –  
The progress regarding Pre-trained Language Models (PLMs) has brought about a transformative 
impact on the field of Natural Language Processing (NLP). through self-supervised learning, yet 
their extensive parameters often lack external knowledge. To bridge this gap, Pre-trained 
Language Models Augmented with Knowledge (PLMs-AwK) have emerged, aiming to integrate 
external information. This review thoroughly explores the development of KE-PLMs in Natural 
Language Understanding (NLU), incorporating linguistic, textual, KG, and rule-based knowledge. 
Additionally, in Natural Language Generation (NLG), it investigates the utilization of KG-based 
and retrieval-based techniques. Moreover, the exploration emphasizes advancements propelling 
KE-PLMs toward superior language comprehension and generation. These strides are focused on 
refining KE-PLMs, enhancing their language processing capabilities to achieve more sophisticated 
levels of understanding and generation. 
Keywords – natural language production and pre-trained language models, natural language 
processing, continual learning Domain-specific knowledge, Efficient fine-tuning, User-friendly 
interfaces, Robustness and security. 
 
1. INTRODUCTION 
[1] Recent years have seen a broad acceptance of Pre-trained Language Models (PLMs) in Natural 

Language Processing due to the ongoing development of deep learning technology (NLP). 
Self-supervised learning is used by models like BERT [1], GPT [2], and T5 [3], which pre-
train on large amounts of unlabeled data and then fine-tune on smaller amounts of labelled 
data. These PLMs have excelled in various NLP tasks, marking a paradigm shift from 
supervised to self-supervised learning. As PLMs grow in size, those with hundreds of 
millions of parameters showcase remarkable capabilities in capturing linguistic nuances 
and factual knowledge. However, their weak symbolic reasoning capabilities derive from 
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the lack of explicit knowledge representation in raw data, which limits their performance 
on downstream tasks [9]. Recognizing this limitation, researchers emphasize the 
incorporation of knowledge into PLMs to enhance memorization and reasoning abilities 
[10]. This observation underscores the need to augment PLMs with external knowledge for 
more effective language understanding and reasoning [10]. 

[2] Existing PLMs often lack human commonsense due to their oversight of external world 
knowledge [11]. Recent studies advocate for the explicit incorporation of knowledge into 
PLMs [12], with classifications based on knowledge sources, granularity, and applications 
[12]. This survey provides a thorough analysis of various knowledge sources, tasks, and 
fusion techniques with a focus on Knowledge-Enhanced Pre-trained Language Models 
(KE-PLMs) and their effects on NLU and NLG.Our taxonomies for NLU and NLG, 
depicted in Fig. 1, categorize KE-PLMs based on knowledge types for language 
understanding and retrieval-based and KG-based methods for language generation. 
Furthermore, we discuss potential research directions to address current challenges and 
advance KE-PLMs' capabilities. By considering future innovations, we contribute to the 
ongoing development of KE-PLMs for more robust language understanding and generation 
in NLP [13]. The paper concludes by outlining PLMs and training paradigms, presenting 
taxonomies for KE-PLMs in NLU and NLG, discussing representative works, and 
proposing future research directions [1-3, 9-13]. 
 

[3] 2.  BACKGROUND 
[4] Pre-trained Language Models (PLMs) have undergone a transformative shift in natural 

language processing (NLP), moving from traditional language modeling to a pre-train and 
fine-tune methodology. This evolution is exemplified by models like ELMo and ULMFiT, 
which leverage LSTM architecture and emphasize layer-by-layer fine-tuning for 
downstream tasks. Departing from early data-constrained supervised methods, PLMs now 
undergo extensive training on unprocessed textual data to acquire adaptable, all-purpose 
representations. 

[5] The pre-train and fine-tune paradigm involves initial pre-training on large amounts of 
unprocessed textual data, followed by fine-tuning with task-specific objectives during the 
refining stage. UNILM is one such model that integrates multiple language modeling 
objectives, ensuring flexibility in tasks related to natural language generation (NLG) and 
comprehension (NLU). This approach, with its focus on layer-by-layer fine-tuning, 
enhances  
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[6]  
[7]  

[8]  
[9] the generalization capabilities of models and makes them competitive across a spectrum of 

natural language processing applications.  
[10]  
[11] Transformer architecture with multi-head self-attention is the cornerstone of many 

contemporary language models, such as GPT-2, BERT, BART, and T5. This approach 
helps these models perform well in a variety of tasks by allowing the capturing of long-
range relationships and the creation of expressive representations. While BERT predicts 
words bidirectionally using masked language modeling, GPT generates sequences 
sequentially. BART and T5 employ encoder-decoder architectures to create sequences 
based on input sequences. 

[12] By proposing a fresh approach in NLP, prompt learning challenges the traditional pre-train 
and fine-tune paradigm. The "pre-train, prompt, and predict" paradigm bypasses fine-
tuning, allowing PLMs to predict outputs based on textual prompts. This departure from 
traditional methods aims to overcome constraints and align objectives, presenting a 
transformative shift in NLP. 

[13] Despite the promising outcomes of prompt-based learning, challenges persist in selecting 
optimal prompt verbalizers and templates, influencing model performance. Recent 
endeavors advocate for leveraging knowledge as a prompt during fine-tuning, infusing 
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domain/task-specific knowledge to enhance PLMs' adaptability and performance in 
downstream tasks. This strategic move signifies an elevation of the prompt-tuning process. 

[14] The survey delves into the realm of prompt-based learning, exploring its landscape and 
revealing both progress and challenges. The infusion of domain-specific knowledge during 
fine-tuning is highlighted as a strategic enhancement, contributing to heightened 
performance across various NLP tasks. The selection of optimal prompt verbalizers and 
templates remains a critical consideration, and recent efforts emphasize leveraging 
knowledge as a prompt to address these challenges. 

[15] Pre-trained Language Models Augmented with Knowledge (PLMs-AwK) represent a 
rapidly evolving field. This paradigm shift reflects ongoing efforts to incorporate external 
knowledge in innovative ways. The survey investigates how injecting relevant knowledge 
during the fine-tuning stage enhances model adaptability and performance, shaping the 
future of PLMs in the dynamic field of natural language processing. 

[16]  
3. KE-PLMS FOR NLU 
Decoding textual content, the machine is driven by Natural Language Understanding (NLU). 
Guidance is essential for tasks like text categorization and NLU (Named Entity Recognition, NLU, 
and Natural Language Understanding). To facilitate a comprehensive comprehension of natural 
language, Figure 1 illustrates how Pre-trained Language Models Augmented with Knowledge 
(PLMs-AwK) integrate linguistic, text, information graph, and rule knowledge for natural 
language understanding tasks. 
 
3.1 Integrating Information About Linguistics 
Linguistic knowledge plays a pivotal role in augmenting Pre-trained Language Models (PLMs), 
encompassing lexical knowledge and syntax tree information [40]. LIBERT introduces Lexical 
Relation Classification (LRC) within the BERT framework, predicting semantic relations by 
utilizing synonyms and hypernym-hyponym pairs [41]. SenseBERT integrates word-supersense 
information to predict corresponding supersenses, enriching semantic understanding [42]. SKEP 
enhances sentiment analysis in PLMs by incorporating sentiment knowledge, including sentiment 
words and aspect-sentiment pairs [43]. SentiPrompt takes a step further by integrating sentiment 
knowledge about aspects, opinions, and polarities into prompts, enhancing task-related knowledge 
through prompt-tuning methods [28]. LET leverages HowNet's semantic information for Chinese 
sentence matching tasks [44], while KEAR excels in commonsense knowledge question answering 
by combining ConceptNet, dictionary entries, and labeled training data [45]. DictBERT adopts a 
unique strategy by employing dictionary knowledge as an external source, enhancing knowledge 
through contrastive learning [46]. 
In the realm of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs), syntax tree 
knowledge integration employs diverse strategies. LIMIT-BERT employs multi-task learning, 
amalgamating task-specific losses related to linguistic knowledge during model training [47By 
using a syntax tree parser and a novel attention strategy, Syntax-BERT improves syntactic 
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information [48]. By combining syntax information through a graph-based structure, syntax-
augmented BERT presents a syntax-based graph neural network [50]. These approaches showcase 
the versatility of KE-PLMs in accommodating linguistic structures. The integration of linguistic 
knowledge occurs at different stages: LIBERT, SenseBERT, Fig.2 SKEP, LIMIT-BERT, Syntax-
BERT, and DictBERT fuse linguistic knowledge during the pre-training stage [41, 42, 43, 47, 48, 
46], while SentiPrompt, LET, SLA, Syntax-augmented BERT, and KEAR incorporate knowledge 
during the fine-tuning stage, aiming to improve task performance [28, 44, 49, 50, 45]. 
 
3.2 Infusing Textual Knowledge into PLMs 
Pre-trained Language Models (PLMs) derive textual knowledge from diverse sources, including 
general-domain text collections like Wiki Text and Wiktionary, along with extensive corpora such 
as Wikipedia. KNN-LM incorporates knowledge by selecting the nearest neighbors from training 
samples, inspired by cache-LM. REALM utilizes a text retriever trained on a corpus, extracting 
information from external knowledge bases like Wikipedia to predict masked tokens. Textual 
description integration improves performance in models such as ExpBERT and KEAR. Using a 
novel strategy, OK-Transformer integrates extensive out-of-domain commonsense descriptions 
from the ATOMIC2020 knowledge base and uses Transformer to fuse them with input text. 
Kformer retrieves text knowledge from external sources, embedding it into the FeedForward 
Network (FFN) layer of the Transformer. REINA leverages knowledge by retrieving training 
samples similar to the input from external datasets, while UniK-QA, UDT-QA, and KiC integrate 
text, knowledge graph, and table knowledge. For domain-specific knowledge, BioBERT and 
SciBERT focus on scientific domain corpora for pre-training tasks. S2ORC-BERT employs a 
methodology similar to SciBERT but operates on a larger corpus covering diverse academic 
papers, contributing to enhanced performance on various downstream tasks associated with 
academic literature. In the knowledge fusion process, While KNN-LM, ExpBERT, KEAR, OK-
Transformer, Kformer, REINA, UniK-QA, and UDT-QA incorporate knowledge during the fine-
tuning stage, optimizing models for particular downstream tasks, REALM, SciBERT, BioBERT, 
and S2ORC-BERT integrate text knowledge during pre-training [51–63]. 
 
3.3  Infusing Textual Knowledge into PLMs 
A knowledge graph, in which nodes stand for entities and edges for relations, is a powerful tool 
for representing real-world data in a graph structure. [64], [65]. Unlike unstructured text 
knowledge, knowledge graphs offer richer structured information, making them valuable for 
enhancing the learning capacity of models [66], [67], [68], [69]. Within the knowledge graph, we 
distinguish entity knowledge and triplet knowledge, as illustrated in Fig. 3. This section offers a 
sophisticated interpretation of structured data, highlighting its ability to enhance language models' 
capabilities. 
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3.3.1 Entity Knowledge 
Knowledge graphs include several relational triples in addition to entity knowledge, which provide 
structured information to improve the semantic comprehension of Pre-trained Language Models 
(PLMs) and make them stronger. Techniques for triplets in KE-PLMs can be divided into three 
sub-types, much like entity knowledge incorporation. 
Triplet pre-training assignments, such as ERICA [74], incorporate entity and relation 
discrimination exercises to improve PLM understanding via contrastive learning. KEPLER [82] 
elevates knowledge representation by teaching veiled language modelling aims and knowledge 
embedding at the same time. 
 

 
 
DKPLM [75] substitutes long-tail entities with knowledge triplets by using a fig .4 pre-training 
activity to predict the relations and entities that will be replaced. In addition to producing pertinent 
knowledge sub-graphs for phrases and knowledge-based pre-training activities, KP-PLM [83] also 
provides knowledgeable prompts. These prompts are produced from mapping rules and linked 
with the original input to provide PLMs with a single input. 
Pre-trained Language Models (PLMs) are improved by a variety of approaches that change model 
structures, add external knowledge, and tweak attention mechanisms. As an example, KEAR [45] 
suggests an external attention mechanism that integrates external knowledge into the Transformer 
design, as seen in Table 2. Model structure alterations involve the introduction of knowledge 
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fusion modules, as shown by the works of FaE [86], KLMO [89], KB-adapters [88], KERM [90], 
and K-ADAPTER [87]. Using unified architectures. 
 

 
Figure 4: Overview approach involves three modules: Knowledge Retrieval, Double Check, and 
Knowledge Fusion. It retrieves relevant local KG and facts, enhances heterogeneous knowledge, 

and deduces the final answer prediction.[153] 
 
3.3.2 Triplet Knowledge 
Pre-trained Language Models (PLMs) have contributed significantly to the advancement of 
Natural Language Processing (NLP), but knowledge graphs' structured knowledge can be used to 
maximize their potential, particularly entity and relational triples. This integration is systematically 
classified into three sub-categories, each contributing unique methodologies to augment PLMs.In 
the first category, pre-training tasks pertaining to triplets are designed to specifically target entity 
and relational triples. ERICA introduces discrimination tasks for entities and relations, intensifying 
PLMs' comprehension through contrastive learning. KEPLER takes a comprehensive approach, 
simultaneously to improve knowledge representation, masked language modelling goals and 
training knowledge embedding are used. DKPLM, on the other hand, concentrates on long-tail 
entities and augments semantic information by pre-training them with appropriate knowledge 
triplets. KP-PLM is a leader in knowledge-aware pre-training tasks, enhancing performance on a 
variety triplet into natural language cues with ease, improving performance in Natural Language 
Understanding (NLU) challenges. 
The second group is concerned with altering PLMs' attention mechanisms. To avoid meaning 
changes, K-BERT incorporates a knowledge layer into the input sentence to include relevant 
triplets. CoLAKE extends the input context of word-knowledge graphs and leverages masked self-
attention to extract insightful information. KEAR offers an external attention mechanism, 
enhancing the Transformer architecture's possibilities. The PLM model's structural modifications 
fall under the third category. In order to efficiently combine information from symbolic knowledge 
graphs, FaE has a facts memory module. External adapter modules are used by K-ADAPTER and 
KB-adapters for smooth knowledge inclusion, while a knowledge aggregator component is used 
by KLMO for interactive modelling. A knowledge injector module is introduced by KERM for 
activities like passage re-ranking. Graph Neural Networks (GNNs) and PLMs are coupled in 
JointLK and GreaseLM to enable joint reasoning in commonsense reasoning. JAKET introduces 
a comprehensive joint training framework, On the other hand, for open-domain question 
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answering, UniK-QA and UDT-QA use unified knowledge representation architectures. 
Significant progress in integrating triplet knowledge into PLMs has been made with Know Prompt 
and Onto Prompt, which incorporate entity and relation knowledge into prompts. These 
programmers highlight emerging research trends in the application of AI and ML [74, 82, 75, 83, 
84, 85, 45, 30, 31, 58, 59, 81, 86, 87, 88, 89, 90, 91, 92]. 
 

 
3.3.3 Fusion stage 
Pre-fusion is a large category of tactics that pre-trained Language Models (PLMs) benefit from 
and post-fusion methods, with some models adopting a hybrid approach combining both stages. 
In the pre-fusion category, exemplified by ERNIE [71], WKLM [72], LUKE [76], and CoLAKE 
[85], knowledge integration occurs during the pre-training stage. Conversely, post-fusion methods 
like K-BERT [84], K-ADAPTER [87], and JointLK [91] introduce knowledge during the fine-
tuning stage. ERNIE-THU [77] and KnowBert [78] exemplify hybrid models, adeptly integrating 
knowledge across pre-training and fine-tuning phases. Notable examples include CoLAKE [85], 
engaging in joint learning of entity and relation embeddings during the training phase, and K-
BERT [84], introducing knowledge graph triples during the reasoning phase. This array of fusion 
methods collectively bolsters PLMs, fortifying their language understanding and reasoning 
capacities for a range of natural language processing tasks [71, 72, 76, 85, 84, 87, 91, 77, 78]. 
 
3.4 Rule Knowledge in PLMs 
Incorporating clear logical reasoning processes from logic rules, which formalize knowledge from 
external sources, into Pre-trained Language Models (PLMs) enhances interpretability. For 
instance, RuleBERT [94] leverages Horn rules from existing corpora, creating a training dataset 
and subsequently fine-tuning the model. Employing probabilistic answer set programming, it 
predicts event probabilities and endeavors to learn soft rules from PLMs, demonstrating improved 
deductive reasoning performance. In the realm of incorporating logic rules, PTR [27] stands out 
for integrating them during fine-tuning through manually created sub-prompts within task-specific 
prompts. More interpretable prompts result from this technique. This additionally allows the model 
to encode prior information relevant to a given job. [94, 27]. 
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3.5 NLU Benchmarks Overview 
The Pre-trained Language Models Augmented with Knowledge (PLMs-AwK) collection assesses 
Natural Language Understanding (NLU) tasks that are cognizant of previous information by 
testing their performance on pre-established benchmarks Table 5 and specialized datasets. The 
goal of these assessments is to offer a comprehensive picture of KE-PLM performance across a 
range of language areas. 
The General Language Understanding Evaluation, or GLUE [95], is a baseline measure that 
includes nine NLU tasks such as sentiment analysis and textual entailment. Super GLUE [96] is 
an expansion of it that presents eight tasks with increasingly complex language understanding 
problems, pushing models to higher comprehension levels. 
Using cloze-style statements, LAMA (Language Model Analysis) [7] evaluates factual knowledge 
in language models in a knowledge-centric manner. It evaluates models for a range of tasks that 
are intended to weed out examples with simple answers. 
A large supervised relation extraction dataset called TACRED [98] is used to evaluate models' 
ability to extract relations from text. The FewRel [99] few-shot relation classification dataset is 
used to evaluate a model's capacity to categories relations using few training examples. 
While CoNLL-2003 [102] concentrates on named entity recognition, Open Entity [100] and 
FIGER [101] evaluate entity typing. Commonsense QA [103] and OpenBook QA [104] assess 
models' commonsense reasoning skills through multiple-choice question responding. 
WebQuestions [106] concentrates on Freebase entities, while  
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Natural Questions [105] tests models using open-domain queries from the Google search engine. 
With trivia and quiz-league questions, TriviaQA [107] expands on open-domain question-
answering. 
The Stanford Sentiment Treebank, or SST-2 [108], evaluates how well models capture the 
subtleties of sentiment at the phrase level. This comprehensive assessment provides an overview 
of the capabilities of KE-PLMs [95-108]. 
 
4. PLMS-AWK FOR NLG: 
Making it possible for machines to produce understandable linguistic documents that resemble 
human expressiveness is the aim of natural language generation, or NLG. KE-PLMs use a variety 
of knowledge forms other than input sequences to increase text production efficiency. These 
strategies, which offer a sophisticated approach to Natural Language Generation challenges, fall 
into two categories: KG-based and retrieval-based techniques. They are informed by a knowledge-
enhanced text generation survey [32]. This classification offers a formalized summary of how KE-
PLMs use external knowledge, obtained from retrieval methods or knowledge graphs, to enhance 
language generation models and improve their ability to produce coherent, contextually relevant, 
and human-readable texts. 
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4.1 Retrieval-Based Knowledge Integration with PLMs 
In order to advance Pre-trained Language Models Augmented with Knowledge (PLMs-AwK), 
retrieval-based techniques are essential because they enable skilled retrieval mechanisms to add 
extra knowledge to input sequences [32]. In addition to the input, they retrieve additional data from 
a variety of outside sources, such as training sets, big databases, and internet search engines. The 
main objective is to direct the process of creating content and improve the produced output's 
contextual relevance. Retrieval augmented generation techniques, which priorities retrieving 
materials and rearranging them for generation, are part of these approaches. Retrieval augmented 
generation techniques improve generation by integrating acquired knowledge [49, 85-92]. 
 
These sub-methods are graphically categorized in Figure 5, which also shows the different tactics 
used in each. Figure 6 illustrates how KE-PLMs integrate outside knowledge during the fine-
tuning stage, enhancing their performance on a range of downstream 
In the retrieval augmented generation space, MemNet [85] creates the first Transformer memory 
network that can retrieve significant conversational data from the past pertaining to a certain topic, 
enhancing the subsequent words that are stated. During prediction creation, RAG [86] uses a 
retriever to identify the top K relevant documents and seamlessly combines them for more data. 
KFCNet [87] sets itself apart by obtaining prototypes that capture ideas from a given set and 
ensuring that they are semantically consistent with target sentences. This model captures global 
target information and effectively extracts general features from recovered models by 
incorporating contrastive learning modules into both the encoder and the decoder. To improve 
machine translation, REINA (49), selects training examples that are similar to the input text KGR4 
[88] utilizes. This improvement substantially raises the bar for open-domain question answering 
ability. See A three-module system (search, knowledge production, and final answer) is used by 
KeR [90] to produce knowledge from articles retrieved through search engine results. The 
generated responses are timelier and more relevant when current data is used, which sets them 
apart from the competitors [49, 88-90]. In terms of retrieval strategies for knowledge-enhanced 
text synthesis, RETRO [91] creatively gathers information from vast text databases using trillions 
of tokens as retrieval inputs to enrich the language model. In order to improve performance on 
these diverse tasks, Unified SKG [92] employs a comprehensive technique that combines six task 
categories into a text-to-text format and introduces linearized knowledge. The various abilities of 
knowledge-enhanced pre-trained language models (KE-PLMs) to boost language creation 
processes are demonstrated by these creative retrieval strategies. 
 
In The domain of the retrieve, rerack, and rewrite process SKT [93] is one of the notable studies 
that views the process of choosing information as a sequence of choices. SKT makes use of a A 
sequential latent variable model can be used to gradually increase the accuracy of knowledge 
selection through multiple discussion rounds. PLUG [94] uses a multimodal retrieval approach, 
gathering relevant information from dictionaries, Wikipedia, and knowledge graphs, among other 
sources. PLUG then uses both statistical and semantic criteria to rank this material, laying the 
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groundwork for knowledge-grounded discourse production [91–94]. The diverse array of retrieval-
based methods showcases several methods for integrating external knowledge and highlights the 
adaptability of these models for an array of natural language production uses. The subtle methods 
used by these 
 

 
Figure 6: Retrieval-Augmented Generation Workflow 

 
4.2 Integrating Knowledge Graphs into Pre-trained Language Models (PLMs): 
In order to categories the degree of detail in We categories the information found in Pre-trained 
Language Models Enhanced with Knowledge (PLMs-AwK) into three groups, as indicated on the 
right: understanding acquired through Information Graphs (KG): triplet knowledge, subgraph 
knowledge, and knowledge obtained through path finding. Figure 5 In the first category, route 
discovery is used to extract information [96, 97], and careful consideration of the related path is 
made to facilitate reliable decision-making. This detailed classification offers a thorough grasp of 
how KE-PLMs use various types of knowledge to improve their capacity for language 
comprehension and reasoning [96–97]. This technique is demonstrated by Fig. 7 CE-PR [96] and 
MRG [97], which engage in explicit reasoning on relation routes, resulting in a significant increase 
in text output efficiency. To maintain nodes with greater scores, CE-PR creates a subgraph based. 
 
In terms of subgraph integration, certain KE-PLMs (e.g., GRF [101]) include this knowledge into 
the decoder. This method improves the interpretability of the model by allowing the tracking of 
each decoding step. Fig.8 BART increases language understanding and creation across several 
phases by introducing subgraph information into both the encoder and the decoder [11]. 
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Fig.7: Comparison between MRG and CE-PR using information gleaned via path finding. 
 
Use pre-fusion strategies for Natural Language Generation in the context of methods that include 
data before instruction, such as JointGT [102], PLUG [94], and UnifiedSKG [92]. (NLG). On the 
other hand, post-fusion techniques like KG-BART [11], MoKGE [103], MixGEN [99], CNTF 
[100], MRG [97], KEPM [98], GRF [101], and CE-PR [96] all include knowledge when fine-
tuning. The contrast between these two integration strategies provides information on the many 
ways that KE-PLMs use knowledge to improve NLG performance [11, 92]. 
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Figure 8 The fusion decoder, enclosed in a red box, combines encoder feature map (Fe) and self-
attended decoder volume (Fs) using multi-layered cross-attention, producing CGL segmentation 
mask (OF D). 
 
4.3 NLG Benchmarks 
Establishing comprehensive benchmarks for evaluation the topic of natural language generation 
(NLG) requires further research. Although well-known benchmarks like as GLGE [136] and KilT 
[137] offer insightful information, it's possible that they aren't explicitly designed to meet the needs 
of knowledge-enhanced generation [40]. Table 6 shows that pre-trained Language Models 
Augmented with Knowledge (PLMs-AwK) are frequently used for particular NLG tasks, which 
means that a summary of pertinent dataset benchmarks is required. To assess the effectiveness of 
Pre-trained Language Models Augmented with Knowledge (PLMs-AwK) on a range of natural 
language tasks, for example, datasets are crucial. Benchmark datasets include the Wizard of 
Wikipedia [109], CMU DoG [129], Natural Questions [105], TriviaQA [107], and CommonGen 
[130], which evaluate KE-PLMs on a range of linguistic tasks to demonstrate their adaptability 
and skill [109, 129, 105, 107, 130].  
 

 
5. PROSPECTIVE PATHS 
This section describes prospective avenues for KE-PLMs research in the future, with the goal of 
resolving persistent problems and difficulties in the field. The suggested paths are meant to 
advance the research and development of PLMs-AwKs, or Pre-trained Language Models 
Augmented with Knowledge, resulting in new discoveries and enhanced capabilities. 
 
5.1  Knowledge Fusion from Various Sources 



China Petroleum Processing and Petrochemical Technology 
 

Catalyst Research   Volume 23, Issue 2, December 2023   Pp. 4871-4904 

 
4885 DOI: 10.5281/zenodo.7778371 

There is a lot of potential for investigating the integration of knowledge from varied and 
heterogeneous sources because current approaches primarily rely on knowledge from unique 
sources, like knowledge graphs or web repositories. In order to improve the capabilities and 
performance of language models on a variety of tasks, future research should give priority to 
developing strategies that efficiently combine insights from different knowledge stores. UniK-QA 
[58] integrates text, tables, and relational triplets, harmonizing structured KBQA knowledge with 
open-domain unstructured information. UDT-QA [59] brings structured knowledge, including 
graphs and tables, into linear sequences for text generation. Pre-trained Language Models (PLMs) 
can respond to open-domain questions more reliably and with greater coverage of the subject 
matter when they are fed a diverse range of information sources. 
 

 
 
5.2  Two-Modal Knowledge Integration Exploration 
Although most of the research being done presently focuses on textual knowledge, there is a 
growing recognition of the potential that remains unexplored in multi-modal sources. Beyond 
textual and tabular data, photos, videos, and audio appear as unexplored knowledge sources for 
Pre-trained Language Models (PLMs), offering an opportunity to further enhance the capabilities 
of PLMs-AwK, or Pre-trained Language Models Augmented with Knowledge. 
ERNIE-VIL [140] and KB-VLP [139] were the first to integrate multi-modal knowledge. By 
utilising both text and images from other sources, KB-VLP improves semantic alignment. In order 
to achieve precise semantic alignment across vision and language modalities, ERNIE-VIL parses 
input descriptions and fine-tunes models. 
Combining various modalities together, including written explanations and visual aids like 
pictures, encourages complementarity and synergy, where each modality enhances the 
understanding provided by the others. 
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5.3 Presenting Evidence for Interpretability 
While KE-PLMs do well in a variety of text creation tasks, they struggle with tasks that call for 
commonsense knowledge reasoning. Projects such as GRF [125] mitigate this problem by using 
external knowledge graphs to support explicit commonsense reasoning. GRF stands out for 
incorporating comprehensive structural information, enabling dynamic multi-hop reasoning across 
various relational paths. This not only offers a theoretical basis for result generation but also 
emphasizes the significance of explicit reasoning paths to enhance model interpretability and 
ensure more rational predictions. 
 
5.4 Continuous Knowledge Learning in Model 
Contemporary models, primarily trained on static or non-updated data during pre-training, 
confront a significant challenge known as the catastrophic forgetting problem when confronted 
with new tasks, wherein initial knowledge tends to be overlooked [141]. As information from 
diverse sources continues to expand, there is a demand for strategies enabling models to assimilate 
new information while retaining their existing knowledge—a paradigm referred to as continual 
learning or life-long learning. 
 
In response to this challenge, ELLE [142] presents an extension module that expands the breadth 
and depth of the model, allowing for the efficient learning of new information while maintaining 
the accuracy of preexisting knowledge. K-ADAPTER [87] and KB-adapters [88] incorporate 
adapters into pre-trained language models concurrently (PLMs) to store both factual and linguistic 
knowledge, ensuring the continual assimilation of additional information. Prioritizing continuous 
knowledge integration stands out as a promising research avenue [40]. The adoption of continuous 
and expanding pre-training methodologies holds the ability to increase PLMs' universality, solve 
the catastrophic forgetting issue, and guarantee that these models adapt to new information. 
Strategies for continuous learning emerge as crucial in optimizing PLMs for evolving tasks and 
knowledge landscapes, emphasizing the necessity for adaptability and sustained knowledge 
incorporation. 
 
5.5 Efficiency in Knowledge Integration for Large Models 
The proliferation of knowledge and trained models’ integration has led to heightened 
computational challenges [143]. Although there has been improvement in the pre-training duties, 
there is a notable lack of focus on the computational implications of knowledge fusion. To tackle 
this issue, we suggest two investigational paths: firstly, improving efficiency in knowledge 
acquisition and filtering, and secondly, optimizing the computational load. These approaches 
present promising strategies for addressing the escalating computational requirements linked to 
the increasing the size of previously trained models and introducing new information. 
 
5.6 Enhancing Result Diversity   



China Petroleum Processing and Petrochemical Technology 
 

Catalyst Research   Volume 23, Issue 2, December 2023   Pp. 4871-4904 

 
4887 DOI: 10.5281/zenodo.7778371 

Diversifying output creation is a crucial task in the field of Natural Language Generation (NLG)., 
especially in generative commonsense reasoning, is addressed by MoKGE [127]. This method 
strategically employs diversified knowledge reasoning sourced from commonsense knowledge 
graphs, enhancing NLG diversity. By integrating concepts linked to the initial input, guided by 
human annotations, MoKGE employs a mixture of expert methods to generate diverse and 
plausible outputs. This approach significantly contributes to amplifying the range of results in 
NLG tasks pertaining to generative commonsense reasoning. 
Table 9: KE-PLMs Summarized: RC, RE, ET, NER, QA, 
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KEPLMS: UNVEILING FUTURE TRAJECTORIES FOR ADVANCEMENTS  
Revolutionizing ML and DL techniques in 2022-23, Knowledge-Enriched Pre-trained Language 
Models (KEPLMs) excel with advanced training strategies, leveraging diverse datasets and 
optimized model architectures. 
 
6.1 Multimodal Learning Integration:  
The recent strides in multimodal architectures, notably exemplified by innovations like DALL-E, 
showcase remarkable progress in image generation from textual prompts. Over the past two years, 
these advancements have stirred significant interest on platforms like Twitter, attracting attention 
from both researchers and the broader online and art communities.  
The commercial applications in film production and gaming are evident, although copyright 
challenges persist. The precision achieved by these architectures is noteworthy, yet concerns about 
potential misuse for deep fakes linger. Multimodal architectures, like GPT-3 with 175 billion 
parameters, are not immune to biases, necessitating ongoing investigation, while their "black-box" 
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nature poses transparency challenges. Integrating Multimodal Learning with Pre-trained Language 
Models Augmented with Knowledge (PLMs-AwK) , exemplified by Fig.9 GANs, emerges as a 
futuristic research strength. However, as architectures grow in complexity, addressing 
environmental costs, computational demands, and promoting equitable access are critical for 
responsible AI development.  
 

 
Figure 9: The text-conditioned convolutional GAN architecture that is being suggested. The 
Discriminator and the Generator are both fed text encoding υ(t). First, in fully-convolutional neural 
networks, it is projected to a lower dimensionality before 
 
6.2 Continual Pre-Training:  
[146] presented TCPL, a two-phase learning system for concept prerequisites. Pre-training that is 
ongoing improves language models through relationship discrimination. A resource–concept 
graph is used in joint learning to maximise R-GCN and the language model. Outperformed 
baselines but has limitations. Future work includes heterogeneous graph modeling and diverse 
relationship consideration. 
 
By training on During the continuous pre-training phase, domain-related knowledge is integrated 
into the pre-trained language model using a masked language model and relationship 
discrimination tasks in the domain corpus.[146] The stage of collaborative learning makes use of 
the connections between structural and textual data. During the continuous pre-training phase, idea 
pairs improve the BERT model for textual representation, and a resource–concept heterogeneous 
graph is created. Concept-related knowledge is also into the BERT framework.  
 

 
Figure 10: The design of the method we suggest. The pretrained language model is improved and 
adjusted with R-GCN at the joint learning stage of the continuous pre-training phase. 
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inputs for structural representations in the R-GCN model. [Fig.9] Concatenating these 
representations, the classification layer processes the input. BERT, Fig. 10 R-GCN, and the 
classification layer are all optimized at the same time in order to lower the training objective TM. 
 
6.3 Dynamic Knowledge Graphs: 
Innovating the conceptual design phase, current CAD tools lack ample support. Future research 
proposes a dynamic knowledge graph, a futuristic approach leveraging pre-trained language 
models. This envisions architects developing abstract conceptual sketches, divorcing details, 
supported by real-time domain ontology. The dynamic knowledge graph allows experts to 
formalize knowledge, with runtime adaptability for building class-specific design rules. Tool 
support showcases these concepts, exemplifying the cutting-edge consistency analysis between 
knowledge and conceptual design. This groundbreaking study [147] aims to produce pre-trained 
language models and dynamic knowledge representation, which will transform the field of 
conceptual design in building construction. 
 

 
Figure 11: Multi-layered system architecture for dynamic knowledge formalization [147] 
 
6.4 Transfer Learning Advancements: 
In the realm of image forensics, a forward-looking research approach pioneers the fusion of Fig. 
12 DeepLabv3+ [148] and Error Level Analysis (ELA)[148]. This innovative method employs 
ELA to accentuate error level variations induced during image compression, facilitating precise 
localization of tampered areas. Leveraging ResNet50 in the transfer learning framework minimizes 
training time. Despite a constrained dataset, the network is fine-tuned for accurate forged region 
localization. Comparative assessments highlight superior precision compared to existing 
techniques, regardless of forging methods. Future research endeavors aim to elevate performance 
by integrating other pretrained models in Pre-trained Language Models Augmented with 
Knowledge (PLMs-AwK). This strategic leap embraces the transformative potential of 
applications for deep learning (DL) and machine learning (ML)within the evolving landscape of 
digital forensics. 
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Figure 12: DeepLabV3+ [148] based method for localising image forgeries. Batch normalisation 

and ReLU are used in each convolution block in the diagram. 
 
6.5 Ethical and Bias Mitigation: 
In AI and ML applications, the synergy between Pre-trained Language Models Augmented with 
Knowledge (PLMs-AwK) and bias mitigation is pivotal for future research trends. Mitigating 
biases is crucial for fair outcomes, and KE-PLMs, enriched by external knowledge, play a 
significant role. They actively contribute to bias mitigation by leveraging diverse knowledge and 
training on datasets emphasizing fairness, diversity, and representation. KE-PLMs integrate 
cultural nuances, historical contexts, and societal factors to navigate biases in language and data, 
fostering context-aware and unbiased predictions. Future research may explore advanced 
techniques within KE-PLMs for both bias identification and active mitigation during decision-
making, ensuring adaptability to evolving societal norms. The proposed interactive approach 
[149], integrating human intuition, judgment, and objective bias measures, lays the foundation for 
ongoing investigations. Expanding user interactions and adapting sampling to address conflicting 
fairness criteria aligns with the evolving paradigm of multi-criteria decision-making, anticipating 
a future where KE-PLMs seamlessly integrate ethical considerations into AI and ML applications. 
 
6.6 User-Friendly Interfaces: 
[150] paper extensively reviews Fig.13 Real-Time Analytics (RTA) solutions: investigating tools, 
processing platforms, infrastructure, and analytics methodologies. It introduces a logical analytics 
stack, addressing key research questions (RQs) on recent concepts, architectures, and integrating 
machine learning/artificial intelligence (ML/AI) into RTA. Noteworthy novelties include practical 
insights from real-life finance and health case studies, emphasizing ML/AI integration. The paper 
anticipates future trends by discussing challenges, potential ML/AI incorporation, data quality, and 
user-friendly solutions. The connection with Pre-trained Language Models Augmented with 
Knowledge (PLMs-AwK) lies in enhancing RTA fig.12 through advanced language 
understanding, potentially aiding in data quality and analytics insights. This comprehensive 



China Petroleum Processing and Petrochemical Technology 
 

Catalyst Research   Volume 23, Issue 2, December 2023   Pp. 4871-4904 

 
4892 DOI: 10.5281/zenodo.7778371 

review, bridging AI/ML with RTA, is crucial for both academic and industrial collaboration, 
guiding future advancements in the field. 
 

 
Figure 13:The real-time analytics stack [150] 

 
6.7 Robustness and Security Measures: 
Our exploration delves into large-scale pre-trained transformers' durability, highlighting their 
tenacious accuracy on difficult datasets intended to reveal false correlations hidden within the 
model. Notable results highlight how pre-training significantly increases robustness by skillfully 
extrapolating from a small number of samples, counteracting the predominately incorrect 
tendencies in the training set. To further improve resilience, the study recommends using bigger 
model sizes, augmenting pre-training data, and implementing Fig.14 Multi-Task Learning (MTL) 
with auxiliary data, especially in situations when minority cases are few. As we look ahead, we 
advocate a paradigm shift, focusing on fortifying Pre-trained Language Models Augmented with 
Knowledge (PLMs-AwK) with enhanced security measures. Leveraging insights from data 
diversity expansion methods and principled out-of-distribution generalization strategies, this 
approach aims to anticipate challenges in future applications. Unraveling the subtleties of pre-
trained models' resistance to overfitting and understanding the impact of diverse initializations are 
vital strides in designing robust fig. 13 and secure models, aligning with the trajectory of 
technology forecasting in Machine Learn 
 
6.8 Collaborative Research Initiatives: 
[151] article addresses five challenges in modeling Open Innovation (OI) settings, proposing 
requirements for an enhanced technique, FPM 2.0, derived from BPMN 2.0. FPM 2.0 caters 
specifically to Collaborative Exploration (CE) modeling, including elements crucial for OI, such 
as collaboration patterns and think Let utilization. While promising, the article has limitations, 
focusing on "outside-in" OI processes and requiring further exploration for broader applicability, 
especially in "inside-out" fig. 14 scenarios. The quality and practicality of FPM 2.0 need validation 
through assessment studies, testing ease of use and completeness. Connecting this with Fig.15 Pre-
trained Language Models Augmented with Knowledge (PLMs-AwK) could enhance FPM 2.0 by 
providing advanced language understanding, potentially improving the accuracy and completeness 
of collaborative process representations in OI initiatives. Future research trends in AI and ML may 
involve integrating KE-PLMs to optimize modeling support for mass collaboration in OI. 
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Figure 14:Use Creately’s easy online diagram editor to edit this diagram, collaborate with others 

and export results to multiple image formats. 
 

 
Figure 15:Research approach.[151] 

CONCLUSION 
Finally, our thorough analysis offers a thorough examination of Knowledge Enhanced Pre-Trained 
Language Models (KE-PLMs) in the fields of Natural Language Generation (NLG) and Natural 
Language Understanding (NLU) (NLG). The proposed meticulous taxonomies offer a nuanced 
understanding, discerning the unique focuses of KE-PLMs in each domain. By delving into 
representative works and methodologies, we illuminate the contributions of these models, 
accompanied by a critical examination of evaluation benchmarks. 
Within NLU, our survey navigates through the nuanced integration of linguistic, textual, rule-
based knowledge and knowledge graphs (KG) into KE-PLMs. Concurrently, Our division of 
models into retrieval-based and KG-based procedures in the field of NLG highlights the variety of 
methods used to incorporate outside information. 
This survey transcends the current landscape to spotlight the prevailing challenges and problems 
encountered by KE-PLMs. Our insights into potential future research directions serve as a 
roadmap, guiding and stimulating further advancements in this promising field. As a valuable 
resource, this survey fosters a deeper appreciation of the intricacies of KE-PLMs, paving the way 
for future innovations and breakthroughs. 
In shaping the future of research in KE-PLMs, this study contributes to the foundation of 
knowledge in the field. Researchers can draw upon our insights to inform their investigations, 
addressing existing challenges and forging new paths for exploration. The interdisciplinary nature 
of KE-PLMs, combining linguistic, textual, and knowledge-driven elements, underscores their 
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potential for transformative applications across diverse sectors. This study lays the groundwork 
for a continued dialogue, encouraging scholars and practitioners to collaborate and push the 
boundaries of KE-PLMs, thereby propelling the field towards new frontiers of discovery and 
innovation. 
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