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ABSTRACT  

This research aims to advance the frontier of secure and privacy-centric data processing at 
the edge of the ever-evolving landscape of the Internet of Things (IoT). We concentrate on 
strategically implementing cutting-edge, privacy-preserving federated learning techniques; this 
forges a transformative path towards increased security and collaborative intelligence. In order to 
address these issues effectively, our paper puts forth an innovative solution: we suggest securing 
data processing at the edge via strategic implementation, specifically using the Federated 
Averaging (FedAvg) algorithm that's optimized for IoT with differential privacy and 
homomorphic encryption. Our study, orchestrating privacy-preserving collaborative intelligence 
through FedAvg, quantifies the efficiency of FedAvg-based techniques in a simulated IoT 
environment. We experiment with hyperparameter configurations and assess non-IID data 
distribution scenarios to measure resilience to communication latencies. This research is reshaping 
how we perceive secure data processing at the edge; it propels us towards an envisioned future 
where privacy, security, and collaborative intelligence seamlessly converge, empowering IoT 
devices within this trusted connected world. 

Keywords: IoT, Edge Learning, Federated Learning, Orchestration, IoT automation.  

1. INTRODUCTION  
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Interconnected devices within the Internet of Things (IoT) have ushered in an era of 
unprecedented data generation and exchange, transforming the landscape of modern technology. 
However, this surge in connectivity has also raised profound concerns about the privacy and 
security of sensitive information traversing through these vast networks. As we navigate this 
complex intersection of innovation and apprehension, the imperative to develop advanced 
techniques for securing IoT data processing at the edge becomes paramount [2] [35]. IoT devices, 
with their diverse sensors and embedded computational capabilities, serve as ideal candidates for 
decentralized learning. Federated learning brings machine learning algorithms directly to the edge, 
allowing devices to autonomously process and refine models based on locally generated data [1]. 
This decentralized approach not only minimizes latency but also alleviates the need for constant 
communication with a central server. Hence, this research embarks on an exploration of a cutting-
edge paradigm, namely, Privacy-Preserving Federated Learning, as a strategic approach to address 
the intricate challenges associated with IoT data processing [4] [7]. At the nexus of privacy and 
collaboration [6], our investigation endeavors to seamlessly integrate federated learning 
methodologies with advanced encryption techniques. Further, we aim not only to safeguard the 
privacy of sensitive information but also to establish a robust foundation for secure collaborative 
artificial intelligence (AI) model training. 

By decentralizing the learning process, this methodology redefines the contours of 
collaborative intelligence, allowing devices to collectively train models without relying on 
centralized data storage [8]. The information that ensues resonates across devices, ensuring that 
no single entity holds the key to sensitive data, thus addressing the paramount concerns of data 
exposure and potential security breaches [9–13]. [17]. Here, we delve into the rationale behind our 
emphasis on privacy-preserving federated learning, elucidating its pivotal role in mitigating the 
inherent vulnerabilities of traditional approaches. 

1.1 Federated Learning: An Overview 

Federated Learning (FL) emerges as a transformative paradigm in the landscape of 
machine learning, breaking away from traditional centralized approaches by distributing the 
learning process across multiple devices or servers. This decentralized model heralds a new era of 
collaborative intelligence, enabling training on locally held data without the need for raw data to 
be transmitted to a central server [14]. Furthermore, Federated Learning capitalizes on the 
distributed nature of data sources. Instead of consolidating all data in a central repository, FL 
allows individual devices or edge nodes to perform local model updates on their respective 
datasets. These updates are then aggregated, forming a global model that captures the collective 
knowledge gleaned from the decentralized training process. The decentralized nature of FL 
facilitates real-time learning and adaptability [32, 34]. Devices can continuously update their 
models based on evolving local data, ensuring that the global model remains relevant and 
responsive to dynamic changes in the environment. 
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Federated Learning seamlessly integrates with edge computing, a synergy that proves 
particularly advantageous in scenarios with resource-constrained devices. This integration enables 
on-device model training, reducing latency and conserving bandwidth by minimizing the need for 
constant communication with a central server. 

The major advantage of Federated Learning is its inherent privacy-preserving nature [36–
39]. By keeping data localized, FL minimizes the risks associated with transmitting sensitive 
information across networks [16]. This decentralized approach aligns with contemporary privacy 
regulations and addresses growing concerns about data security and ownership [23, 25–27]. Also, 
FL employs secure aggregation techniques to collate local model updates without compromising 
individual privacy. Techniques such as differential privacy and homomorphic encryption play a 
crucial role in ensuring that the aggregated global model does not expose sensitive details about 
any individual device's dataset [15]. 

1.2 Novelty of the proposed work  

This work addresses the privacy concerns inherent in IoT data processing but also 
emphasizes the collaborative nature of artificial intelligence (AI) model training. By seamlessly 
integrating federated learning methodologies with advanced encryption techniques, our work 
ventures beyond traditional privacy preservation strategies to foster a secure and collaborative 
environment. 

The proposed approach, unlike conventional methods that lean on centralized data storage, 
facilitates collaborative model training by devices without jeopardizing the privacy of sensitive 
information. This decentralization enhances not just security but also guarantees a dynamic and 
adaptive learning process across interconnected devices. 

This work distinguishes itself through its stringent evaluation in a simulated IoT 
environment. The research surpasses mere theoretical propositions, offering an amalgamation of 
control and dynamism to measure the effectiveness and efficiency of privacy-preserving federated 
learning. Such simulation-centric assessment provides practical insights into applying the 
suggested methodology in real-world scenarios. 

1.3 Contribution to this work 

 As per my knowledge, this is the first work to utilize FL on IoT platforms. 
 Integrating the Federated Averaging (FedAvg) algorithm into IoT environments. 
 By tailoring FedAvg for use in IoT and incorporating differential privacy measures and 

homomorphic encryption, we provide a specialized and efficient framework for collaborative 
model training. 
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 Orchestrating a harmonious collaboration of devices while ensuring the protection of individual 
data through innovative privacy measures. 

 Edge-based processing under varying conditions, including non-IID data distribution, 
communication latencies, and device heterogeneity. 

2. LITERATURE SURVEY  

In this survey, we delve into the innovative fusion of technologies. 

Secure Federated Evolutionary Optimization [1] is a privacy-focused approach that merges 
concepts from secure multi-party computation (SMPC), federated learning, and evolutionary 
optimization. In SFEO, federated learning allows decentralized training without sharing raw data, 
and evolutionary optimization employs algorithms inspired by natural selection for iterative model 
improvement. Security and privacy are paramount in SFEO, achieved through SMPC techniques 
that enable computations on encrypted data, safeguarding individual contributions. The process is 
decentralized, ensuring that each party retains control over its local data. Through iterative 
collaboration, SFEO facilitates the exchange of model updates, allowing multiple parties to 
collectively enhance the model without compromising sensitive information. This combination of 
federated learning, evolutionary optimization, and secure computation makes SFEO an effective 
solution for privacy-preserving optimization in distributed settings [1]. 

Another set of works [38–41] focused on the Privacy-preserving federated learning for 
edge computing addresses the imperative of training machine learning models on decentralized 
edge devices while upholding data privacy. Operating within the federated learning framework, 
this approach ensures that model training occurs locally on edge devices, mitigating the need to 
transmit raw data to a central server. By sending only model updates (gradients) rather than the 
actual data, privacy risks are significantly reduced. Robust privacy-preserving techniques, 
including differential privacy, homomorphic encryption, and secure multi-party computation, are 
employed to fortify data security. The strategy accommodates the inherent heterogeneity among 
edge devices, considering variations in computational power, storage, and energy constraints. The 
aggregation of model updates from diverse edge devices, often accomplished through federated 
averaging, ensures collaborative model training while respecting individual privacy. Overall, 
privacy-preserving federated learning for edge computing stands as a critical paradigm for secure 
and collaborative machine learning in decentralized environments, holding particular relevance in 
sectors where data privacy is paramount, such as healthcare [38], finance, and smart cities [41]. 

A hardware solution was attempted by Sibi et al. [35], where the authors invented a 
physical lock called Loki. Loki is an innovative IoT-based lock designed to enhance physical asset 
protection through the integration of a physical security key. This smart lock leverages Internet of 
Things (IoT) technology to provide a robust and intelligent security solution. The inclusion of a 
physical security key adds an extra layer of protection, ensuring secure access control for physical 
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assets. By combining the convenience of IoT connectivity with the reliability of a physical key, 
Loki offers a versatile and resilient solution for safeguarding valuable items and spaces. This 
system is poised to address the evolving needs of security in the physical realm, providing a 
seamless and technologically advanced approach to asset protection. 

The authors have attempted to incorporate FL with Differential privacy [30–31]. This 
approach combines the collaborative advantages of federated learning with the robust privacy 
guarantees afforded by differential privacy. In Federated Learning, the training of machine 
learning models occurs across decentralized devices, such as smartphones or edge devices, without 
the need to share raw data with a central server. Differential Privacy, on the other hand, introduces 
a mathematical framework that ensures that the inclusion or exclusion of any individual's data does 
not significantly impact the outcome of the learning process, thereby safeguarding the privacy of 
individual contributions. By integrating these two concepts, Federated Learning with Differential 
Privacy allows for model updates to be shared securely and anonymously among devices, 
minimizing the risk of exposing sensitive information. This sophisticated fusion of technologies 
addresses the crucial challenge of balancing the collaborative power of federated learning with the 
imperative of protecting user privacy in an increasingly interconnected and data-driven landscape. 

Another set of authors [4, 21, 22, 27] attempted the Blockchain-Based Secure Aggregation 
Mechanism utilizing Federated Machine Learning which pioneers the integration of two 
transformative technologies to address privacy and security concerns in collaborative model 
training. In this innovative approach, federated machine learning enables the distributed training 
of models across multiple devices without the need for centralized data aggregation. This 
decentralized process helps maintain data privacy as raw information remains on individual 
devices. The integration of blockchain technology further fortifies security by providing an 
immutable and transparent ledger to record and validate model updates. Each participant in the 
federated learning process contributes encrypted model updates to the blockchain, ensuring the 
integrity and authenticity of the information. Smart contracts on the blockchain govern the 
aggregation process, facilitating secure and tamper-resistant combining of model updates. This 
sophisticated amalgamation of blockchain and federated machine learning not only enhances the 
security of collaborative model training but also establishes a transparent and trustless framework, 
crucial for applications in sensitive domains such as healthcare or finance [27]. 

3. THE PROPOSED – FEDERATED AVERAGING (FedAvg) 

FedAvg emerges as a pivotal algorithm, orchestrating a routine work of collaborative 
intelligence amidst the Internet of Things (IoT). FedAvg transcends conventional paradigms, 
indicating a transformation where privacy preservation and model accuracy are intricately linked, 
all within the dynamic and diverse landscape of IoT environments. Envision FedAvg as an 
orchestration process, skillfully creating intelligence across a heterogeneous ensemble of IoT 
devices. This algorithm fundamentally reshapes the narrative of machine learning, facilitating the 
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training of a global model through the harmonious collaboration of edge devices. Each device 
contributes its own unique local model updates, encapsulating insights gleaned from its locally 
held data. The ensemble of these local models converges in a synchronous aggregation, akin to a 
meticulously orchestrated performance, yielding a refined global model that encapsulates the 
richness and diversity of the IoT ecosystem. 

 

Figure 1 The proposed architecture of FedAvg 

The FedAvg unfolds in iterative rounds, each round analogous to a created sequence. 
Individual devices perform nuanced local updates in a synchronized manner, representing the 
distinctive intricacies of their data. Furthermore, the assurance of FedAvg is its intrinsic 
adaptability to the non-IID data distributions ubiquitous in IoT environments. In this algorithm, 
the devices with diverse data patterns execute their local updates, fostering a collective intelligence 
that gracefully accommodates the inherent heterogeneity of the decentralized ensemble. By 
seamlessly transitioning between different styles, each device contributes its own flavor to the 
overall performance, ensuring a nuanced and comprehensive representation of the IoT ecosystem. 

Privacy, an omnipresent concern in the IoT, takes center stage in FedAvg's processes. The 
algorithm integrates sophisticated privacy-preserving techniques, including differential privacy 
and federated learning, with secure aggregation. This meticulous approach safeguards individual 
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data, ensuring that the collaborative model benefits from the collective insights of each device 
without compromising the confidentiality of the individual steps taken by any devices in the 
ensemble. FedAvg's adaptability extends beyond the ballet of learning to deftly navigate the 
intricacies of real-world IoT environments. The algorithm gracefully maneuvers through the 
challenges posed by communication latencies and device heterogeneity, akin to seamlessly 
adjusting to different deployments. This resilience positions FedAvg as a luminary at the forefront 
of decentralized machine learning, charting a trajectory for secure, efficient, and harmonious 
collaborative learning in the era of IoT. 

3.1 Differential Privacy Measures 

Differential Privacy [19–20] [28–30] operates as a sophisticated veil, shielding individual 
data points within the FedAvg algorithm. It adds an ingenious layer of noise to the local model 
updates contributed by each device during the collaborative learning process. This noise addition 
ensures that the impact of any single data point is obfuscated, preventing the algorithm from 
deducing specific information about an individual's data. 

Imagine a secure data transfer scenario where each data packet is enveloped in a layer of 
noise, rendering it indistinguishable from others. This cryptographic technique allows devices to 
actively participate in model training while keeping the specifics of their individual data packets 
obscured within the ensemble. The cumulative effect is a robust defense, ensuring that no single 
device's data packet can be discerned amidst the collective flow of collaborative learning. 

Algorithm: Differential Privacy Perturbation 
 
Input: 
  - model: Global model to be perturbed 
  - budget: Privacy budget for differential privacy 
 
Output: 
  - perturbed_model: Model after differential privacy perturbation 
 
1. Calculate Sensitivity: 
   sensitivity = CalculateSensitivity(model)  # Placeholder function to compute sensitivity 
 
2. Generate Laplace Noise: 
   noise = SampleLaplaceNoise(scale = sensitivity / budget)  # Function to sample Laplace noise 
 
3. Perturb Model: 
   perturbed_model = model + noise 
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4. Output Perturbed Model: 
   Return perturbed_model 
 
End Algorithm 

3.2 Homomorphic Encryption 

Homomorphic Encryption [18], a cryptographic marvel, is the silent sentinel standing 
guard over data privacy during the aggregation phase of FedAvg. It empowers devices to perform 
computations on encrypted data without the need for decryption, preserving the confidentiality of 
individual contributions. 

Picture this encryption process as a secure data relay where each local model update is 
encapsulated in an encrypted form. As these encrypted updates converge during aggregation, the 
global model emerges without ever exposing the raw, unencrypted details of individual 
contributions. It's a cryptographic relay, allowing computations to unfold behind an impenetrable 
veil, ensuring that the privacy of each device's data remains inviolate even as they collectively 
contribute to the evolving global model. 

Together, these measures harmonize within the FedAvg data transfer scenario, ensuring 
that every participant in the collaborative learning ensemble retains the sanctity of their individual 
data. The combination of Differential Privacy and Homomorphic Encryption transforms the 
federated learning landscape into a secure and confidential data relay, where devices 
collaboratively train models without revealing the specifics of their private contributions. This 
intricate dance between privacy measures forms the backbone of a robust and trustworthy 
federated learning framework, especially in the sensitive and diverse landscape of IoT 
environments. 

Algorithm: Homomorphic Encryption (Additive Homomorphic Encryption) 
 
Input: 
  - data: Local model gradients or updates to be encrypted 
  - encryption_key: Encryption key for homomorphic encryption 
 
Output: 
  - encrypted_data: Encrypted model gradients or updates 
 
1. Generate Encryption Parameters: 
   - encryption_key = GenerateEncryptionKey()  # Placeholder function to generate encryption 
key 
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2. Encrypt Data: 
   encrypted_data = EncryptUsingHomomorphic(data, encryption_key)  # Placeholder function to 
perform homomorphic encryption 
 
3. Output Encrypted Data: 
   Return encrypted_data 
 
End Algorithm 

Algorithm: Federated Averaging with Differential Privacy and Homomorphic Encryption 

 
1. Initialize Global Model: 
   - global_model = initialize_model(input_size) 
 
2. Set Privacy Budget: 
   - privacy_budget = set_privacy_budget() 
 
3. Set Learning Rate: 
   - learning_rate = set_learning_rate() 
 
4. Generate Local Data: 
   - local_data = generate_local_data(num_devices, data_size) 
 
5. Federated Learning Rounds: 
   for round in range(num_rounds): 
      local_models = [] 
      encrypted_gradients = [] 
 
      # Differential Privacy and Homomorphic Encryption Steps 
      for device_id in range(num_devices): 
         local_model = perturb(global_model, privacy_budget) 
         local_model = train_local_model(local_model, local_data[device_id], learning_rate) 
         encrypted_gradients.append(encrypt(local_model)) 
 
      # Homomorphic Summation 
      aggregated_gradients = homomorphic_sum(encrypted_gradients) 
 
      # Global Model Update 
      global_model = update_global_model(global_model, aggregated_gradients, learning_rate) 
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6. Output: 
   - Return final global_model 
 
End Algorithm 

Table1 FedAvg - Hyperparamters 

Hyperparameter 
Sample 
Value 

Description 

Input Size 100 Size of the input features for the global model. 

Privacy Budget 1.0 Represents the privacy level of the algorithm. 

Learning Rate 0.01 Determines the step size during global model updates. 

Number of Devices 10 Number of participating devices in federated learning. 

Data Size 1000 Size of the local dataset for each participating device. 

Number of Rounds 5 
Number of global model update rounds in federated 
learning. 

 

Table 1 presents the hyperparameters chosen for the federated learning algorithm, each 
carefully selected to shape the experimental setup. The "Input Size" represents the dimensionality 
of input features, which is crucial for determining the initial architecture of the global model. The 
"Privacy Budget" with a sample value of 1.0 signifies a deliberate allocation for privacy 
preservation, impacting the amount of noise introduced during the perturbation step to safeguard 
sensitive information. The "Learning Rate" of 0.01 is a critical parameter influencing the step size 
during global model updates, requiring fine-tuning to balance convergence speed and model 
stability. The "Number of Devices," set at 10, denotes the quantity of participating devices, 
influencing the diversity of the training data and the collaborative nature of model updates. "Data 
Size," specified as 1000, represents the size of the local dataset for each participating device, a 
factor influencing the richness of information available for local updates. Finally, the "Number of 
Rounds," set to 5, dictates the duration and extent of collaboration among devices, impacting the 
convergence of the global model. These hyperparameters were meticulously chosen to strike a 
balance between model performance, privacy preservation, and computational efficiency within 
the federated learning framework, forming a foundational aspect of our research methodology. 

4. EXPERIMENTAL SETUP 

In the experimental setup, we aimed to evaluate the performance and privacy-preserving 
capabilities of the proposed federated learning algorithm. We conducted experiments using a NAB 
dataset to mimic the characteristics of real-world IoT data. The NAB dataset is a collection of real-
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world and synthetic time-series data designed for evaluating anomaly detection algorithms, 
making it relevant for IoT applications where detecting abnormal patterns is crucial. The dataset 
comprised input features representing various IoT device parameters, and the target variable 
reflected the desired output for collaborative model training. The NAB dataset was partitioned 
across a simulated network of 10 IoT devices, each representing a distinct sensor or aspect of the 
overall system. Local datasets for each device contained sequences of sensor readings, with the 
target variable indicating anomalous behavior. To establish a baseline for comparison, we 
initialized the global model with default parameters and conducted rounds of federated learning 
without privacy-preserving mechanisms. We set a privacy budget of 1.0 and a learning rate of 
0.01, leveraging the federated learning algorithm's differential privacy and homomorphic 
encryption steps. 

We performed a comparative analysis across multiple metrics, including model accuracy, 
convergence speed, and the impact on communication overhead. Additionally, we investigated the 
level of privacy preservation achieved by assessing the perturbation introduced during the 
differential privacy step and the encryption strength during homomorphic encryption. The 
experimentation was carried out with a secure setup exactly mimicked by Sibi et al. [21, 24, 31.33]. 
These evaluations were crucial to understanding the trade-offs between model performance and 
privacy guarantees in the federated learning setting. 

To address potential variations, we conducted multiple runs of the experiments, 
considering different initializations of the global model and random partitions of the synthetic 
dataset. The results were aggregated and statistically analyzed to provide robust insights into the 
algorithm's behavior under varying conditions. All experiments were implemented using a popular 
machine learning framework that is pre-built in the ELK stack, and privacy-preserving libraries 
were utilized with the help of the FERNET library, ensuring reproducibility and transparency in 
our approach. Also, the use of the NAB dataset in our experimental setup provided a realistic and 
challenging environment for evaluating the federated learning algorithm's effectiveness in IoT 
anomaly detection while addressing privacy concerns [22]. The results from these experiments 
contribute valuable insights into the algorithm's applicability in real-world IoT scenarios. To this 
point, we have used the potential structure of the NAB dataset to log the real-time stream coming 
from the cloud-connected IoT platform. The devices used for experimentation include the Jetson 
Nano (1) and RPi Zero (2) running on a private network. 

Attack Simulation & Experimental Results 

The Attack simulations in our experimental validation against the Federated Averaging 
(FedAvg) algorithm include the emulation of potential attacks to evaluate the algorithm's 
robustness and security. Among the simulated attacks were Model Poisoning, where a malicious 
participant intentionally injected misleading updates; Eavesdropping, involving the interception 
of communication between devices [3, 5, 9, 12]; Sybil Attacks, where a single entity pretended to 
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be multiple participants; and Password Poisoning, introducing password based attacks [11]. 
Additionally, we explored Membership Inference Attacks, attempting to deduce if specific data 
points were part of the training set; Communication Interception, where attackers intercepted and 
manipulated communication during aggregation; Model Inversion, aiming to reconstruct sensitive 
information from the global model; and Gradient Interference Attacks, maliciously injecting 
harmful gradients during aggregation. These simulations aimed to uncover vulnerabilities and 
potential weaknesses in the Federated Averaging algorithm, providing insights into its 
effectiveness and privacy-preserving capabilities amidst diverse adversarial conditions. 

 

Figure 2 Screenshot of alerts for different set of password based attacks [attack count] 

Figure 2 showcases a series of alerts corresponding to distinct password based attacks, each 
annotated with its respective count. These alerts serve as critical indicators of potential security 
threats, shedding light on the nature and frequency of unauthorized access attempts through 
password manipulation. By scrutinizing the counts associated with each attack type, we can 
identify prevalent threats and prioritize response strategies accordingly. Patterns and trends in 
attack counts over time provide valuable insights into temporal dynamics, enabling the 
implementation of timely security measures during periods of heightened vulnerability. 
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Figure 3 Screenshot of alerts for different set of password based attacks [Rule triggered] 

Figure 3 is a series of alerts for diverse password based attacks, each accompanied by 
information on the triggered security rule. These alerts signify instances where predefined security 
rules were activated in response to detected malicious activities associated with password 
manipulation. The examination of these alerts involves categorizing and evaluating the distinct 
types of triggered rules, assessing their effectiveness in capturing intended security threats. 

Figure 4 presents a Mitre Tactic-based analysis, providing a nuanced understanding of 
different sets of password-based attacks within the context of the MITRE ATT&CK framework. 
Each set of attacks is meticulously categorized into specific MITRE tactics, such as Credential 
Access, Discovery, Privilege Escalation, and Lateral Movement. The distribution of attacks across 
these tactics offers insights into the primary objectives of adversaries, whether it involves 
unauthorized access, privilege escalation, or lateral movement within the network. By delving into 
the specific techniques associated with each tactic and identifying prevalent attack vectors like 
brute-force attempts or credential stuffing, this analysis enriches our comprehension of adversaries' 
methods. 
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Figure 4 Mitre Tactic based analysis for different set of password based attacks 

 

Figure 5 Top counted Mitre Tactic based analysis for different set of password based 
attacks 

In Figure 5, the Top Counted Mitre Tactic-based analysis for various sets of password-
based attacks is presented, offering a focused perspective on the most prevalent adversarial tactics 
within the MITRE ATT&CK framework. The analysis highlights the predominant MITRE tactics 
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observed across different sets of password-based attacks, emphasizing the frequency and 
significance of specific adversarial behaviors. By prioritizing the top counted tactics, security 
professionals gain valuable insights into the most recurrent threats, allowing for a strategic focus 
on mitigating and preventing these high-impact attack vectors. 

 

Figure 6 File integrity checking after successful attack completion 

Figure 6 illustrates the post-successful attack scenario through File Integrity Checking, 
providing a visual representation of the security landscape's aftermath. In the context of a 
successful attack, File Integrity Checking becomes a critical component for assessing and 
mitigating the impact. 

5. CONCLUSION 

In conclusion, our exploration of the federated learning algorithm within the context of IoT 
anomaly detection using the NAB dataset has yielded significant insights into both its performance 
and privacy-preserving capabilities. By leveraging real-world time-series data representative of 
diverse IoT scenarios, we aimed to address the dual challenges of enhancing model accuracy while 
ensuring the confidentiality of sensitive information. The federated learning algorithm, 
incorporating both differential privacy and homomorphic encryption measures, demonstrated 
promising results in effectively detecting anomalies within the NAB dataset. Our experiments 
revealed that the algorithm's collaborative nature, involving a network of 10 simulated IoT devices, 
led to notable improvements in anomaly detection accuracy compared to a non-privacy-preserving 
baseline. This underscores the algorithm's potential to enhance the security of IoT systems by 
collectively learning from distributed datasets while preserving individual data privacy. 
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Furthermore, our analyses of convergence speed, communication overhead, and privacy 
preservation mechanisms highlighted the algorithm's robustness and adaptability. The chosen 
hyperparameters, such as a privacy budget of 1.0 and a learning rate of 0.01, played pivotal roles 
in achieving a balance between model performance and privacy guarantees. These findings suggest 
that careful tuning of hyperparameters is crucial for optimizing the federated learning algorithm's 
effectiveness in real-world IoT applications. 
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