Volume 23, Issue 2, December 2023

Pp. 4596-4620

PIPER BETEL L. ASSISTED CEO₂ NANOPARTICLES: PHYTOCHEMICAL SCREENING AND SPECTRAL INVESTIGATIONS

Aswathy G¹, Udayakumar R^{1*}, Sriramachandrasekharan MV²

¹Department of Physics, Annamalai University, Annamalainagar, Tamilnadu, India. ²Department of Soil Science and AGRL. Chemistry

ABSTRACT

Biosynthesized CeO₂ NPs, using aqueous leaf extract of *Piper betel L*. have been used as the reducing agent. Synthesised CeO₂ nanopartclies were subjected to Thermal (TG - DTA), Structural (XRD) and Morphological (SEM) analyses. The calcination temperature was fixed at 850 °C. The obtained nanocrystals were found to be cubic with crystallite size being 49 nm. The aqueous *Piper betel L*. leaf extract, as - prepared Cerium oxide nanopowder and biosynthesized CeO₂ nanoparticles were subjected to qualitative phytochemical analysis as well as the spectral analyses like FTIR, GC - MS and ¹HNMR. In all three cases, the phytochemical examination revealed the existence of phenols, coumarins, glycosides, carbohydrates and terpenoids. The existence of phenols and anthraquinones was verified by FTIR spectral investigations. In the current case of GC - MS, flavonoids, phenols, and hydrocavicol were found to be present. In the case of ¹HNMR, the availability of phenols, in all the three cases, has been detected. Therefore, the results of the present study confirmed the pivotal role played by phenols in the formation of *Piper betel L*. induced CeO₂ nanoparticles.

Keywords: *Piper betel L.*, CeO₂ NPs, phytochemicals, FTIR, GC - MS and ¹HNMR **INTRODUCTION**

Piperaceae represents the family of *Piper betel L.*, and it is typically found in hot, humid climates. It is regarded as one of the most beneficial herbal remedies and its leaves were used for various therapeutic applications. Many tribes in India still use it to treat and guard against various illnesses. According to a preliminary investigation, *Piper betel L.* leaf extract contains a significant amount of bioactive compounds [1, 2]. Aqueous crude extract of *Piper betel L.* has been shown to have efficacy against the bacteriae [3]. A wide range of medicinal properties has been reported to be exhibited by *Piper betel L.* [4]. In addition to immunological modulatory, gastroprotective and anti-diabetic properties, the pharmacological profile has been found to have antiplatelet and anti-inflammatory actions [5]. Use of *Piper betel L.* in wound dressing and wound healing was known to Indian communities [6].

Photochemicals are, Plants that contains naturally occurring chemicals that are physiologically active as well as offer nutrition and medical advantages to people [7]. These phytochemicals don't have any negative effects, in contrast to pharmaceutical compounds. More than 4,500 phytochemicals have been identified to date and they are categorised according to their protective properties and physical and chemical makeup. About 350 of these photochemicals have undergone in-depth research [8].

Catalyst ResearchVolume 23, Issue 2, December 2023Pp. 4596-4620

With the chemical formula CeO₂, cerium oxide is a light yellow-white powder with a number of unique characteristics, including a high refractive index, a high dielectric constant, and a lattice constant that is almost identical to silicon. Numerous uses for cerium oxide may be found in microelectronics and optics. Cellular ageing is prevented by cerium nanoparticles [9]. Researchers have discovered that nanoceria particles have anti-inflammatory and antioxidant effects. Neurodegenerative illnesses including Parkinson's and Alzheimer's disease may be treated using cerium oxide nanoparticles [10, 11].

This paper describes the environmentally friendly manufacturing of CeO_2 nanoparticles utilising *Piper betel L*. leaf extract in this context. Various chemical constituents available were identified using qualitative phytochemical analysis and spectral techniques.

MATERIALS AND METHODS

Piper betel L. leaves were collected and used as a bioagent. These leaves were collected in and around Chidambaram Town, Cuddalore district, January 2022 in the Indian state of Tamil Nadu. Cerium (III) sulfate [Ce₂ (SO₄)₃] was procured from M/s Sigma Aldrich (Mumbai, India), as well as used as a precursor in the present work. Dry spectral grade KBr (98.7% purity) was used to prepare the pellet to carry out the FTIR analysis. AR grade chemicals like Sodium nitrite, Hydrochloric acid, Sodium hydroxide, Sulphuric acid, Glacial acetic acid, Ferric chloride, Ninhydrin, Iodine solution and Chloroform were acquired from M/s Merck (Mumbai, India). DCM (Dichloromethane) solvent was procured from M/s Sigma Aldrich (Mumbai, India) and used for the sample preparation for GC - MS analysis. DMSO (Dimethyl sulfoxide) solvent was procured from M/s Sigma Aldrich (Mumbai, India) and used in the case of NMR analysis.

PREPARATION OF PLANT EXTRACT

After being properly cleansed with deionized water to remove any dust, the collected *Piper betel L.* leaves were shade dried. Afterwards, they were ground well into a fine powder. 100 ml of distilled water was added to 10 g of leaf *(Piper betel L.)* powder. The suspension was heated for four hours at 60 °C before being cooled at room temperature. The extract of the leaf *(Piper betel L.)* was obtained by filtering the solution using Whatman No. 1 filter paper [12].

PREPARATION OF CEO2 NANOPARTICLES

2.5 g of precursor $[Ce_2 (SO_4)_3]$ was dissolved in 40 ml of deionized water to prepare a 0.1M solution. 20 ml of the prepared leaf extract was added to the precursor solution, which was then heated at 60 °C for 4 hours. The combination was then heated until it reached a jelly-like state, and the jelly-like state was then subjected to a four hour calcination process at 850 °C in a muffle furnace to create white CeO₂ nanoparticles [12]. The obtained nanosample was then preserved in vials for further analysis.

Fig. 1 represents the procedure involved in the preparation of biogenic CeO₂ nanosample.

Fig. 1 Procedure for preparation of Piper betel L. leaf mediated CeO₂ nanoparticles

INSTRUMENTS

The NETZSCH-STA 449F3-JUPITER analyzer was used to conduct the TG-DTA analysis, with temperature range from 25 °C to 1000 °C. The XRD spectrum was recorded using a FEI-TECHNAI G2-20S twin X-ray spectrometer with 2θ in the range of 20° to 80°. The morphology of the biosynthesized CeO₂ nanoparticles was investigated by employing ZEISS EVO 18 Scanning electron microscope. The elemental composition of the bioinspired CeO₂ nanosample was examined using an Oxford Energy Dispersive X-ray system (INCA 250 EDS with X-MAX 20 mm Detector). The Perkin Elmer L1600300 Spectrum Two LiTa system was employed in the present work for recording the FTIR spectrum. The qualitative phytochemical analysis was done by adopting appropriate test procedures [13 - 15]. GC - MS investigations were executed by utilizing Perkin Elmer GC model Clarus 680 with Clarus 600 mass spectrometer. A 400 MHZ, BRUKER AVANCE I, NMR spectrometer was used to investigate the samples for NMR studies.

RESULTS AND DISCUSSION

A. THERMO GRAVIMETRIC ANALYSIS / DIFFERENTIAL THERMAL ANALYSIS

The thermal characteristics of the as - prepared sample of CeO₂ nanoparticles were studied by using TG - DTA technique, as described earlier and represented as Fig. 2.

Fig. 2 TG - DTA curve for as-prepared CeO₂ nanopowder using *Piper betel L*. leaf extract

From Fig.2 it is obvious that the first stage of weight loss (≈ 10.74 %) occurred, with an endothermic peak, at 225.94 °C which might be because of the removal of locally bound water molecule. The second weight loss of approximately 5.15 %, induced by decomposition of Ce₂ (SO₄)₃, occurred around 635.27 °C. The third and final stage of weight loss of about 26.32 % was recorded between 826 °C and 900 °C. This weight loss may be responsible for the decomposition of chemically bound chromophoric groups and the residual organic constituents of the precursor. These thermal variations may also be due to the presence of organic phase phytochemicals adsorbed on the surface of the synthesized CeO₂ nanopowder. Thirunavukkarasu et al. (2020) and Gopinath et al. (2015) have detected and reported similar weight losses for the synthesized CeO₂ nanosamples [16, 17]. The thermal stabilization has been obtained at 826 °C and hence, the as synthesized sample was calcined at 850 °C. After calcination, the sample was ground well to get fine powdered *Piper betel L*. induced CeO₂ nanopowder and stored for further analysis.

B. STRUCTURAL ANALYSIS

Fig. 3 represents the XRD spectrum recorded for the *Piper betel L*. induced Cerium oxide nanoparticles.

Fig. 3 XRD pattern of bio-Prepared Cerium oxide using *Piper betel L*. leaf extract

Prominent peaks were observed at 27.93 °, 32.47 °, 46.89 °, 55.72 °, 58.47 °, 68.78 °, 76.07 ° and 78.46 ° representing the crystal planar orientations (1,1,1), (2,0,0), (2,2,0), (3,1,1), (4,2,0), (2,2,2), (3,3,1) and (4,0,0) correspondingly. On comparison with JCPDS data [card number (34-0394)], it has been noticed that the CeO₂ nanoparticles, as synthesized in the present study, exhibited cubic crystal structure. Using Debye-Scherrer's formula, various crystallographic data have been calculated and tabulated (Table - 1)

TABLE - 1

Position (2θ)	(h l)	k	FWHM	Integrated Int. (Counts)	d spacing (Å)	Lattice constant (a)	Crystallite size (D) [nm]	Micro strain (€) [x 10 ⁻ ³] (€)	Dislocation Density (δ) [x 10 ⁻¹⁵ m ⁻²]
27.9256	(1 1)	1	0.1968	100	3.195	1.263	42.290	0.856	5.591
32.4704	(2 0)	0	0.1476	27	2.757	2.255	56.388	0.642	3.145
46.8883	(2 0)	2	0.1968	61	1.937	3.433	42.916	0.856	5.429
55.7213	(3 1)	1	0.2952	46	1.649	3.101	28.194	1.284	1.257
58.4705	(4 0)	2	0.1968	8.52	1.578	8.458	42.292	0.856	5.590
68.7822	(2 2)	2	0.1476	9.00	1.364	6.766	56.390	0.642	3.144
76.0761	(33 1)		0.1200	19.05	1.250	13.178	69.361	0.521	2.078
78.4561	(4 0)	0	0.1476	10. 41	1.219	9.022	56.391	0.642	3.144
						Mean	49.454 <u>+</u> 1.172	$ 0.749 \\ \pm \\ 0.144 $	

XRD data for the biosynthesized CeO2 NPs

From Table - 1, the average 'D' and 'C' values were found to be 49 nm and 0.75, respectively. Using W - H plot method (Fig . 4), the 'D' and 'C' values were found out and

Catalyst Research Volume 23, Issue 2, December 2023

Pp. 4596-4620

compared with those obtained using Debye - Scherrer's formula (Table - 2). Table - 3 portrays the outcome of the present XRD investigation with those reported by the earlier workers [18 - 21].

Fig. 4 Williamson - Hall plot of biosynthesized CeO₂ NPs using leaf extract TABLE - 2

Comparison of Debye - Scherrer's and W - H methods

Method	Crystallite size (D) [nm]	Micro strain (€) [x 10 ⁻³]
a) Scherrer's formula	49 <u>+</u> 1.17	0.75 ± 0.14
b) W - H Plot	30	0.017 ± 0.002

TABLE - 3

Comparison of the results of XRD analysis

S. No.	Metal	Precursor used	Method	Crystallite	Reference
	oxide			size (D) [nm]	
	synthesized				
1	Cerium	Ammonium	Green	27	Das et al., 2022 [18]
	oxide	cerium (IV)	synthesis		
		nitrate			
2	Cerium	Cerium nitrate	Hydrothermal	14	Palard et al., 2021 [19]
	oxide	hexahydrate			
3	Cerium	Cerium nitrate	Green	30	Ahmed et al., 2021 [20]
	oxide	hexahydrate	synthesis		
4	Cerium	Cerium nitrate	Sol - gel	8	Choudhury et al., 2012
	oxide	hexahydrate			[21]
5	Cerium	Cerium (III)	Green	49	Present work
	oxide	sulfate	synthesis		

C. MORPHOLOGICAL ANALYSIS

Using the SEM technique, the surface morphology of the synthesised nanoparticles was examined. The outcomes have been displayed in Fig. 5.

Fig. 5 SEM image of Piper betel L. mediated CeO₂ nanoparticles

A close scrutiny of the Fig. 5 reveals the fact that the biosynthesized CeO_2 nanosample exhibited well - defined cubic shape. The results of observation are in good accord with XRD analysis. Similar observations, pointing out the cubic shape for the CeO_2 nanoparticles, were noted by Lulu He et al., 2019 [22] and Liu et al., 2015 [23].

Fig. 6 represents the EDAX spectrum recorded for the *Piper betel L*. assisted cerium oxide nanoparticles. From Fig. 6, it is quite obvious that the prepared nanosamples consisted of Ce, O and K. The presence of K in the prepared biomaterial may be of plant origin. Considering the percentage composition of Ce (41.35 %) and O (51.52 %), the percentage composition of K (7.14%) may be neglected and hence, the results of EDAX analysis indicated the high amount of purity associated with the *Piper betel L*. induced CeO₂ nanosample. Earlier workers [Kashyap et al., 2022 and 2023] have also reported similar results indicating the presence of Ce and O [24, 25].

D. FTIR SPECTRAL ANALYSIS

In order to investigate for the available bioactive compounds, the aqueous extract of *Piper* betel L. leaves, as - synthesized (before calcination) and biosynthesized (after calcination) CeO_2 nanosamples were subjected to FTIR analysis and the spectra were taken in the region of 4000 -

Catalyst ResearchVolume 23, Issue 2, December 2023Pp. 4596-4620400 cm⁻¹. Fig. 7 (a) represents the FTIR spectrum recorded for *Piper betel L*. leaf extract. Table -4, shows that the various functional groups that were present in the sample have been identified.

Fig. 7 FTIR Spectrum for (a) crude extract of *Piper betel L*. (b) as - synthesized nanoparticles (before calcination) and (c) bioprepared CeO₂ nanoparticles (after calcination)

Table - 4

Tei	ntative	assignments	for the l	FTIR	peaks of	f crude	Piper	betel L.	leaf	extract
-----	---------	-------------	-----------	------	----------	---------	-------	----------	------	---------

S. No.	PEAK VALUE (cm ⁻¹)	Assignment
1	3436	O - H Stretching (Phenol)
2	2074	C - H bond (Aromatic compound)
3	1634	C = O (Anthraquinones)
4	665	M - O Stretching

A close examination of Table - 4 indicates the presence of functional groups associated with various phytochemicals, such as phenols and aromatic compounds, as well as anthraquinones and metal oxide. Fig. 7 (b) represents the FTIR spectrum recorded for the as - synthesized (before calcination) CeO_2 nanosample synthesised via *Piper betel L*. leaf extract. Table - 5 represents the tentative assignments made. From Table - 5 it is clear that, in addition to the functional groups pertaining to phytochemicals like phenol, alkaloids, anthraquinones, saponins and vitamins, the Ce - O - Ce band has also been detected.

Catalyst Research

TABLE - 5

Tentative assignments for the FTIR peaks of as - synthesized nanoparticles (Before Calcination)

S. No.	PEAK VALUE	Assignment
	(cm ⁻¹)	
1	3413	O - H Stretching (phenol)
2	2925	Alkyl chain (alkaloids)
3	2855	Alkyl chain (alkaloids)
4	1630	C = O (Anthraquinones)
5	1122	C - F alkyl halide (vitamins)
6	985	C - O Stretching
7	657	C = Cl alkyl halide (acids/ Saponins/ steroids)
8	595	Phonon mode of Ce - O – Ce
9	495	Formation of Ce - O - Ce bond

FTIR spectrum was also recorded for the *Piper betel L*. mediated biosynthesized CeO_2 nanoparticles (after calcination) and the existence of several functional groups was identified and reported, here [Fig. 7 (c) and Table - 6].

TABLE - 6

Tentative assignments for the FTIR peaks of bioprepared CeO₂ nanopowder (After Calcination)

S. No.	PEAK VALUE	Assignment
	(cm ⁻¹)	
1	3436	O - H Stretching vibration (Phenol)
2	2923	Alkyl chain (alkaloids)
3	2854	Alkyl chain (alkaloids)
4	1647	C = O (Anthraquinones)
5	1104	C - O Stretching
6	845	= C = H alkene (lignins)
7	780	Ce - O - Ce bond
8	471	Formation of O - Ce - O bond

The FTIR spectrum for biosynthesized CeO₂ NPs depicted the strongest peak at 3436 cm⁻¹, likely due to the stretching vibrations of OH (phenols). The absorption peak at 2923 and 2854 cm⁻¹ may be allocated to alkyl chains (alkaloids) [26]. The peak centred at 1647 cm⁻¹ may be due to C = O (anthraquinones) [27]. The peak occurring at 1104 cm⁻¹ may be due to the stretching mode of C - O, while the band appearing at 845 cm⁻¹, may be attributed to = C = H alkenes (lignins) [27, 28]. The band at 780 cm⁻¹ may be due to the Ce - O - Ce bond [28]. The presence of the

Catalyst Research Vo

Volume 23, Issue 2, December 2023

prominent band at 472 cm⁻¹ may serve as confirmation that O - Ce - O nanoparticles have formed [29, 30].

TABLE - 7

Comparison of the results of FTIR analysis with earlier works

S.	USED BIOAGENT	IDENTIFIED	REFERENCE
No.		PHYTOCHEMICAL	
		CONSTITUENTS	
1	Acacia Concinna	phenols, aminoacids and flavonoids	Muduli et al., 2023
	Plant		[26]
2	Prosopis farcta Fruit	phenols, alkaloids and flavonoids	Miri et al., 2018 [27]
3	Alovera gel	anthraquinones, enzymes, vitamins,	Priya et al., 2014
		amino acids, lignins,	[28]
		monosaccharide, salicylic acids,	
		polysaccharides, saponins and sterols	
4	Cucumis sativus	alkaloids, phenols, aromatics and	Zaho et al., 2014 [29]
	Finch	Saponins	
5	Thermophilic	phenols, alkaloids, aromatic rings and	Khan et al., 2013
	fungus Humicola sp.	proteins	[30]
6	Piper betle L. Leaves	alkaloids, phenols, aromatic	Present Work
		compound, saponins, steriods and	
		anthraquinones	

Table - 7 illustrates the comparison of the outcome of the current FTIR investigation with those reported by earlier workers [26 - 30]. From Table - 8, it is quite obvious that phenols and anthraquinones were found to be invariably present in all the three chosen samples namely, Aqueous leaf extract, as - synthesized and biosynthesized CeO₂ nanosamples.

TABLE - 8

Outcome of the present FTIR analysis

Phytochemical	Available in							
Present	Crude <i>Piper betel L.</i> leaf extract	Before calcination Sample	After calcination Sample					
Alkaloids	-	+	+					
Aromatic compound	+	-	-					
Phenols	+	+	+					

China I	Petroleum	Processing	and Petrochemical	Technology
---------	-----------	------------	-------------------	------------

Catalyst Research	Volume 23, Issu	e 2, December 2023	Pp. 4596-4620		
Anthraquinones	+	+	+		
Saponins	-	+	+		

(+) indicates Presence;

(-) indicates Absence

E. PHYTOCHEMICAL ANALYSIS

Piper betel L. leaf extract as well as CeO_2 nano powder (before and after calcination) were qualitatively evaluated for their phytochemical constituents. Table - 9 represents the outcome of the phytochemical analysis carried out in the present investigation. A close inspection of Table - 9 shows that the leaf extract of *Piper betel L.* consists of Flavonoids, Coumarins, Alkaloids, Glycosides, Carbohydrates, Saponins, Phenols, Starch, Quinones, Steroids, Terpenoids and Tannins. It shows the presence of Coumarins, Carbohydrates, Glycosides, Phenols, Terpenoids, and Steroids in the case of the as - synthesised CeO₂ nanoparticles. In the case of the biosynthesized CeO₂ nanoparticles, it shows that Carbohydrates, Coumarins, Steroids, Glycosides, and Phenols are present. Table - 10 represents the comparison of the results of the qualitative phytochemical analysis, as carried out in the present study, with those reported by earlier workers [31 - 34].

TABLE - 9

Raw	Qualitative	Phytochemical	Analysis	of	Crude	leaf	extract,	As	-	synthesized	and
Biosy	nthesized Co	eO2 nanosamples	S								

S. No.	Phytochemical Present	Aqueous leaf extract of	Bioinspired CeO2 Nanosample	
		Piper betel L.		
			Before Calcination sample	After Calcination sample
1	Acids	-	-	-
2	Alkaloids	+	-	-
3	Anthocyanins and	-	-	-
	Betacyanins			
4	Carbohydrates	+	+	+
5	Cardiac glycosides	-	-	-
6	Coumarins	+	+	+
7	Flavonoids	+	-	-
8	Glycosides	+	+	+
9	Phenols	+	+	+
10	Proteins	-	-	-
11	Quinones	+	-	-

China Petroleum Processing and Petrochemical Technology

Catalyst Research Vo		Jume 23, Issue 2, December 2023		Pp. 4596-4620
12	Saponins	+	-	-
13	Starch	+	-	-
14	Steroids	+	+	-
15	Tannins	+	-	-
16	Terpenoids	+	+	+

(+) indicates Presence;

(-) indicates Absence

A close scrutiny of Table - 9 reveals the fact that certain phytochemicals were commonly detected in all the three cases. Phytochemical constituents such as Carbohydrates, Coumarins, Glycosides, Phenols and Terpenoids were commonly noticed in all the three samples, chosen for the present investigation.

TABLE - 10

Comparison of the results of phytochemical analysis with earlier works

S.	Bioagent	Solvent	Identified Phytochemical	Reference
No.		Used	Constituents	
1	Piper betel L.	Methanolic	alkaloids, flavonoids,	Murugesan et al.,
	Leaves	extract	saponins, steroids, tannins	2020 [31]
			and terpenoids	
2	Piper betel	Aqueous extract	alkaloids, flavonoids,	Venkateswarlu et
	plant		phenols, anthraquinones,	al., 2014 [32]
			steroids, steroid glycosides,	
			tannins and terpenoids	
3	Piper betel L.	Petroleum ether	flavonoids, phenols,	Singha et al.,
	Leaves	Extract	phytosterols, saponins,	2011
			tannins and terpenoids	[33]
4	Piper betel	Methanolic	alkaloids, flavonoids,	Sushma et al.,
	Inflorescence	extract	glycosides, phenols, steroid	2000
			and tannins	[34]
5	Piper betel L.	Aqueous extract	carbohydrates, flavanoids,	Present Work
	Leaves		coumarins, alkaloids,	
			phenols, quinones,	
			glycosides, saponins, starch,	
			steroids,	
			tannins and terpenoids	

This findings pertaining to the phytochemical analysis provide ample evidence that *Piper* betel L. leaves may supply requisite phytochemical which may serve as both reducing and capping agent in the production of CeO_2 NPs. Thus, the outcome of the present investigation, indicating the

availability of various phytochemicals even in the case of the prepared biogenic CeO_2 NPs, signifies that the identification of the phytochemical constituents may be helpful when looking for biogenic substances and bionutrients that could lead to the discovery of new drugs.

F. GAS CHROMOTOGRAPHY / MASS SPECTRAL ANALYSIS

In order to investigate for the available bioactive compounds, the aqueous extract of *Piper* betel L. leaves, as - synthesized (before calcination) and biosynthesized (after calcination) CeO_2 nanosamples were subjected to GC - MS analysis. The qualitative study was carried out by comparing the retention time and mass obtained for the selected samples with the collective database created by NIST. Table - 11 contains the findings of the qualitative study done on the crude extract of *Piper betel L*., whereas Fig. 8 displays the gas chromatogram.

Fig. 8 Gas chromatogram of the crude leaf extract of *Piper betel L*. leaves TABLE - 11

GC - MS analysis of Piper betel L. Crude leaf extract

S. No.	RT	Tentative Assignment	NORMS
	VALUE		(%)
	(min.)		
1	2.528	Silane, Diethyl (Tannins)	19.02
2	2.633	N- Methyltaurine (Acids)	54.78
3	12.512	Phenol, 2- Methoxy-3-(2)	38.15
4	14.288	Aromadendrene (Aromatic ring)	19.51
5	14.623	Spiro Carboxylic acid	19.62
6	14.708	Phenol, Acetate	39.56
7	17.295	2,6- Dibromotoluene (hydrocavicol)	100.00
8	19.881	N- Hexadecanoic acid (Fatty Acids)	19.52
9	21.656	Phytol (flavonoids)	19.35
10	25.043	Benzene, (1-octyl dodecyl) (Phenyl)	19.08
11	25.093	Dodecane,1-Chloro-(Hydroxychavicol)	13.25

China Petroleum Processing and Petrochemical Technology

Catalyst Re	esearch		Volume 23, Issue 2, December 2023	Pp. 459	06-4620
	12	26.133	Phthalic acid (Alkaloids)	64.13	
Ī	13	31.530	Dodecanal (Phenols)	17.82	

Table - 11 reveals that a variety of phytochemicals, like tannins, acids, aromatics, carboxylic acids, phenols, hydrocavicols, fatty acids, flavonoids, and alkaloids, are present. Similar observations have been made by earlier workers. Table - 12 indicates the difference between the results of the current GC - MS analysis with those reported by other researchers [35 - 38]. The results we obtained indicate that certain phytochemical components, including phenols, flavonoids, and tannins, are essential for the synthesis of nanoparticles.

TABLE - 12

Comparison of the results of GC - MS analysis with earlier works

S.	BIOAGENT	IDENTIFIED	REFERENCE
No.		PHYTOCHEMICAL	
		CONSTITUENTS	
1	Piper betel L.	flavonoids, phenols and	Madhumita et al., 2019 [35]
	Leaves	carbohydrates	
2	Piper betel plant	fatty acids, phenols, flavonoids	Annegowda et al., 2013
		and tannins	[36]
3	Piper betel L.	flavonoids, phenols, acids, phytol	Dwivedi et al., 2010 [37]
	Leaves	and carbohydrates	
4	Piper betel L.	flavonoids, phenols, phytosterols,	Arambewela et al., 2005
	Leaves	Saponins and tannins	[38]
5	Piper betel L.	alkaloids, acids,	Present Work
	Leaves	flavonoids,phenols, aminoacids,	
		saponins, and hydrocavicol	

Fig. 9 illustrates the Gas chromatogram recorded for as - synthesized (before calcination) CeO₂ nanoparticles while Table - 13 represents the tentative assignment of the observed peaks.

Fig. 9 Gas Chromatogram of as - synthesized (before calcination) CeO2 nanosample

TABLE - 13

GC - MS analysis of as - synthesized (before calcination) CeO2 nanosample

S. No.	RT	Tentative Assignment	NORMS
	VALUE		(%)
	(min.)		
1	2.623	N- Methyltaurine (Acids)	100.00
2	2.829	Hexopyranose (Flavonoids)	4.46
3	18.110	2- Undecanone 2,4 – Dintrophenylhydrazone	3.49
		(Carbohydrates)	
4	20.026	4- Undecene, 10- methyl-, (Carbohydrates)	21.68
5	20.271	Trimethyl tetradecanol (Alkaloids)	6.38
6	21.196	Methyl ester (Acid)	5.82
7	21.256	Aminonenadecane (Aminoacid)	4.56
8	24.022	Trimethyl tetradecanol (Alkaloids)	4.58
9	25.688	1- octadecanamine, N-Methyl- (Terpinoids)	3.04
10	26.633	propenoic acid (Phenols)	30.48

From Table - 13 it is clear that the as - synthesized (before calcination) CeO_2 nanosample contains bioactive compounds such as Acids, Flavonoids, Carbohydrates, Alkaloids, Terpenoids, and Phenols. Fig. 10 shows the Gas chromatogram recorded for the biosynthesized (after calcination) CeO_2 nanoparticles while Table - 14 represents the results of the qualitative analysis made on it.

Fig. 10 Gas chromatogram of biosynthesized (after calcination) CeO₂ nanoparticles

TABLE - 14

GC - MS analysis of synthesized (After calcination) CeO2 nanopowder

S. No.	RT	Tentative Assignment	NORMS
	VALUE		(%)
	(min.)		
1	2.533	Silane, Diethyl (Tannins)	86.96
2	20.030	5- tridecene, (Flavonoids)	15.17
3	21.491	2,6- Dibromotoluene (Hydrocavicol)	4.92
4	26.653	Heptane,3-(Bromomethyl)	100.00
		(Flavonoids)	
5	28.569	Dodecanal (Phenols)	4.96

From Table - 14, it is quite obvious that phytochemicals such as Tannins, Flavonoids, Hydrocavicol and Phenols, available in the case of the crude leaf extract, were also present in biosynthesized CeO_2 nanosamples, even after calcination.

TABLE - 15

Outcome of the present GC - MS analysis

Phytochemical	Available in				
Identified	Crude	Before calcination	After calcination		
lucitineu	Piper betel L. leaf extract	Sample	Sample		
Alkaloids	+	+	-		
Carbohydrates	-	+	-		
Acids	+	+	-		
Flavonoids	+	+	+		

China Petroleum Processing and Petrochemical Technology

Catalyst Research	Volume 23, Issue 2, Decemb	Volume 23, Issue 2, December 2023	
Hydrocavicol	+	-	+
Phenols	+	+	+
Tannins	+	-	+
Terpenoids	-	+	-

(+) indicates Presence;

(-) indicates Absence

From Table - 15, it is crystal clear that Phenols and Flavonoids were noticed to be invariably present in all the three chosen samples namely, aqueous leaf extract, as - synthesized (before calcination) and biosynthesized (after calcination) CeO_2 nanosamples. This striking finding reveals the crucial role of phytochemicals in the development of *Piper betel L*. mediated CeO_2 NPs and hence, it may be expected that the *Piper betel L*. inspired CeO_2 nanoparticles may exhibit an excellent antimicrobial and other biogenic activities.

G. ¹HNMR SPECTRAL ANALYSIS

Fig. 11 and Table - 16 (a) represent the spectrum and the results of ¹HNMR spectral analysis of crude extract of *Piper betel L*., leaves respectively.

Fig. 11 ¹HNMR spectrum of Aqueous leaf extract of *Piper betel L*.

A close scrutiny of Table - 16 (a) reveals the following valid informations: The ¹HNMR peak at 0.025 ppm may be attributed to the presence of hydroxyl group (Panda et al., 2003). According to Gharpure et al., (2022), the ¹HNMR signals noticed in the region 6.678 - 6.683 ppm may be assigned to aromatic rings.

TABLE - 16

Tentative Assignment for the ¹HNMR spectrum for (a) Aqueous leaf extract of *Piper betel L*. (b) as-prepared and c) bioprepared CeO₂ nanosample

(a) Crude leaf extract of <i>Piper betel L</i> .				
S. No.	Peak Value	Tentative Assignment	Phytochemical	
	(ppm)		name	
1	0.025	Hdroxyl group	Phenols	
2	6.678 - 6.683	aromatic ring	Phenols	
3	7.283	- C ₆ H ₅ group	Phenols	
4	7.727 - 7.734	- C ₆ H ₅ group	Phenols	
5	13.104	C ₁₅ H ₁₂ O ₅	Flavonoids	
(b)	before calcination (a	s - synthesized) sample		
S. No.	Peak Value	Tentative Assignment	Phytochemical	
	(ppm)		name	
1	1.780	aliphalitic group	Phenols	
2	2.511	- C ₆ H ₅ group	Phenols	
(C) aft	er calcination (biosy	nthesized CeO ₂) sample		
S. No.	Peak Value	Tentative Assignment	Phytochemical	
	(ppm)		name	
1.	4.532 - 4.611	polar group of phenols	Phenols	

The appearance of phenols in the analyzed samples may be approved from the occurrence of three types of down - field peaks at 7.283, 7.727 and 7.734 ppm (Mozumder et al., 2020). The peak at 13.04 ppm [Evangelos et al., 2006; Exarchou et al., 2002] may be an indication of the presence of flavonoids.

Fig. 12 ¹HNMR spectrum of as - prepared (CeO₂) nanosample

Fig. 12 illustrates the ¹HNMR spectrum recorded for the as - synthesized (before calcination) CeO₂ nanoparticles. The tentative assignment of various NMR peaks occurring in the case of as - synthesized CeO₂ nanoparticles, is being represented as Table - 16 (b) and the following observations have been made:

The peak at 1.780 ppm may be due to the presence of aliphatic group (Lopez - Martinez et al., 2015). While the signal centered at 2.511 ppm may be due to the phenolic group (Osman et al., 2021).

Fig. 13 ¹HNMR spectrum of biosynthesized (CeO₂) nanoparticle

Fig. 13 represents the ¹HNMR spectrum for biosynthesized CeO_2 nanoparticles while Table - 16 (c) represents the tentative assignment done for the proton NMR peaks occurring in the spectrum. The proton NMR peaks positioned at 4.532 - 4.611 ppm, as detected in the present study, may be due to the polar group of phenols (Gharpure et al., 2022)

Table - 17 illustrates the comparison of the results of the present work with those reported earlier [39 - 45]

TABLE - 17

Comparison of the results of ¹ HNMR analysis with earlier works

S.	BIOAGENT	IDENTIFIED	REFERENCE
No.		PHYTOCHEMICAL	
		CONSTITUENTS	
1	Cocos nucifera	Hydroxyl group, aromatic	Gharpure et al., 2022 [39]
	Extract	group, alkyl group and	
		phenols	
2	Piper betel L.	Phenols, hydroxyl group and	Osman et al., 2021 [40]
	Leaves	Flavonoids	
3	Camellia sinensis	Phenols, fatty acids, sucrose	Mozumder et al., 2020 [41]
	var. Plant	and glucose	
4	Manguifera indica,	Phenols, carboxylic acid,	Lopez - Martinez et al., 2015
	Carica papaya	aromatics and hydroxyl group	[42]
	Fruit		
5	Hypericum	Phenols, carbonyl group,	Evangelos et al., 2006 [43]
	perforatum Flower	hydroxyl group and	
		flavonoids	
6	Piper betel L.	hydroxyl group, phenyl group	Panda et al., 2003 [44]
	seeds	and flavonids	
7	Oregano vulgare L.	Phenols, Flavonoids and	Exarchou et al., 2002 [45]
	Leaves	hydroxyl group	
8	Piper betel L.	Phenols, aromatics and	Present Work
	Leaves	Flavonoids	

TABLE - 18

Outcome of the present ¹HNMR analysis

Identified Phytochemical	Available in		
	Crude <i>Piper betel L.</i> leaf extract	Before calcination Sample	After calcination Sample
Phenols	+	+	+
Aromatics	+	-	-
Flavonoids	+	-	-

(+) indicates Presence;

(-) indicates Absence

From Table - 18 it is quite obvious that phenols occur in all the three chosen samples namely, crude leaf extract, as - synthesized (before calcination) and biosynthesized (after

Catalyst Research

Volume 23, Issue 2, December 2023

calcination). This interesting observation confirms the inevitable role played by phenols in the formation of *Piper betel*. L induced CeO₂ nanoparticles.

CONCLUSION

In the present work, the aqueous extract of *Piper betel L*. was used to biologically synthesized CeO₂ nanoparticles and calcined at 850 °C. From the XRD and SEM analyses, the synthesized nanosample was found to be cubic crystal, in nature, with average 'D' value being 49 nm. The outcome of the EDAX studies confirmed the purity of the sample while FTIR spectral analysis ascertained the formation of O - Ce - O bond in the case of *Piper betel L*. induced CeO₂ nanoparticles. The qualitative phytochemical analysis showed the availability of various phytochemicals in all the three chosen samples, namely aqueous leaf extract, as - synthesized (before calcination) and biosynthesized (after calcination) CeO₂ nanosamples. The results of FTIR, GC - MS and ¹HNMR spectral studies clearly portrayed the presence of phenols in all the three samples and thereby ascertained the pivotal role of phenols in the formation of CeO₂ nanoparticles. Since CeO₂ nanosamples exhibited good phytochemical activity, it may be concluded that the *Piper betel L*. induced CeO₂ nanoparticles may serve as efficient bioagent for various biomedical applications.

ACKNOWLEDGEMENT

The lab and library facilities were provided by Annamalai University, Tamil Nadu, India which is being acknowledged by the authors.

DECLARATION

The author attests that they have no financial conflicts of interest with regard to this study.

DISCLOSURE STATEMENT

The author did not disclose any potential conflicts of interest.

REFERENCE

- [1] Shah, Sunil Kumar, Gopal Garg, Deenanath Jhade, and Narendra Patel. "*Piper betle*: phytochemical, pharmacological and nutritional value in health management." *Int J Pharm Sci Rev Res* 38, no. 2 (2016): 181 9.
- [2] Nikhil Kumar1,Pragya Misra, Anuradha Dube, Shailja Bhattacharya, Madhu Dikshit and Shirish Ranade. "*Piper betle* Linn. A maligned Pan-Asiatic plant with an array of pharmacological activities and prospects for drug discovery." Current science, vol. 99, no. (2010): 7 - 10.
- [3] Misra, K. H., B. Kodanda Ramu, and M. Bandyopadhyay. "Evaluation of antiasthmatic effect of ethanol extract of *Piper betle Linn*. against histamine induced *bronchospasm* in guinea pigs." *International Journal of Basic and applied chemical sciences* 4, no. 1 (2014): 67 - 73.
- [4] Chauhan, Ekta Singh, Jaya Aishwarya, Akriti Singh, and Anamika Tiwari. "A review: Nutraceuticals properties of *Piper betel* (Paan)." *Am J Phytomed Clin Ther* 4, no. 2 (2016): 28 - 41.

Catalyst Research

- [5] Bhalerao, Satish A., and Amit S. Sharma. "Ethenomedicinal, phytochemical and pharmacological profile of *Ficus religiosa Roxb*." *Int J Curr Microbiol App Sci* 3, no. 11 (2014): 528 - 538.
- [6] Bhalerao, S. A., D. R. Verma, R. V. Gavankar, N. C. Teli, Y. Y. Rane, and A. Trikannad. "Research and Review: Phytochemistry, pharmacological profile and therapeutic uses of *Piper Betle, Linn.*" *Journal of Pharmacognosy and Phytochemistry* 1, no. 5 (2013): 12 -18.
- [7] Hasler, C. M., and J. B. Blumberg. "Symposium on phytochemicals: biochemistry and physiology." *Journal of Nutrition* 129 (1999): 756S 757S.
- [8] Gibson, E. Leigh, Jane Wardle, and Carolyn J. Watts. "Fruit and vegetable consumption, nutritional knowledge and beliefs in mothers and children." *Appetite* 31, no. 2 (1998): 205 228.
- [9] Kumar, Amit, Soumen Das, Prabhakaran Munusamy, William Self, Donald R. Baer, Dean C. Sayle, and Sudipta Seal. "Behavior of nanoceria in biologically-relevant environments." *Environmental Science: Nano* 1, no. 6 (2014): 516 532.
- [10] Niu, Jianli, Asim Azfer, Linda M. Rogers, Xihai Wang, and Pappachan E. Kolattukudy. "Cardioprotective effects of cerium oxide nanoparticles in a transgenic murine model of cardiomyopathy." *Cardiovascular research* 73, no. 3 (2007): 549 559.
- [11] Markovic, Zoran, and Vladimir Trajkovic. "Biomedical potential of the reactive oxygen species generation and quenching by fullerenes (C60)." *Biomaterials* 29, no. 26 (2008): 3561 - 3573.
- [12] Singh, Jagpreet, Navneet Kaur, Pawanpreet Kaur, Sukhmeen Kaur, Jasneet Kaur, Preeti Kukkar, Vishal Kumar, Deepak Kukkar, and Mohit Rawat. "*Piper betle* leaves mediated synthesis of biogenic SnO₂ nanoparticles for photocatalytic degradation of reactive yellow 186 dye under direct sunlight." *Environmental nanotechnology, monitoring & management* 10 (2018): 331 - 338.
- [13] Patil, Rahul Shivaji, Pooja Madhav Harale, Kiran Vilas Shivangekar, P. P. Kumbhar, and R. R. Desai. "Phytochemical potential and in vitro antimicrobial activity of *Piper betle Linn*. leaf extracts." *J Chem Pharm Res* 7, no. 5 (2015): 1095 1101.
- [14] Shetty, Shilika, and K. K. Vijayalaxmi. "Phytochemical investigation of extract/solvent fractions of *Piper nigrum linn*. Seeds and *Piper betle linn*. Leaves." *International Journal of Pharma and Bio Sciences* 3, no. 2 (2012): 344 - 349.
- Birt, Diane F. "Phytochemicals and cancer prevention: from epidemiology to mechanism of action." *Journal of the American Dietetic Association* 106, no. 1 (2006): 20 21.
- [16] Thirunavukkarasu, Arunachalam, and Rajarathinam Nithya. "Adsorption of acid orange 7 using green synthesized CaO/CeO₂ composite: an insight into kinetics, equilibrium, thermodynamics, mass transfer and statistical models." *Journal of the Taiwan Institute of Chemical Engineers* 111 (2020): 44 - 62.

Catalyst Research Volume 23, Issue 2, December 2023

- [17] Gopinath, K., V. Karthika, C. Sundaravadivelan, S. Gowri, and A. Arumugam. "Mycogenesis of cerium oxide nanoparticles using *Aspergillus niger* culture filtrate and their applications for antibacterial and larvicidal activities." *Journal of Nanostructure in Chemistry* 5 (2015): 295 - 303.
- [18] Das, Satyajit, Nithin Joseph Panicker, Muzamil Ahmad Rather, Manabendra Mandal, and Partha Pratim Sahu. "Green synthesis of cerium oxide nanoparticles using *Dillenia indica* aqueous extract and its anti-oxidant activity." *Bulletin of Materials Science* 46, no. 1 (2022): 3 7.
- [19] Palard, Mickaël, Jérémy Balencie, Aude Maguer, and Jean-François Hochepied. "Effect of hydrothermal ripening on the photoluminescence properties of pure and doped cerium oxide nanoparticles." *Materials Chemistry and Physics* 120, no. 1 (2010): 79 - 88.
- [20] Ahmed, Hafiz Ejaz, Yasir Iqbal, Muhammad Hammad Aziz, Muhammad Atif, Zahida Batool, Atif Hanif, Nafeesah Yaqub et al. "Green synthesis of CeO₂ nanoparticles from the *Abelmoschus esculentus* extract: evaluation of antioxidant, anticancer, antibacterial, and wound-healing activities." *Molecules* 26, no. 15 (2021): 46 - 59.
- [21] Das, Satyajit, Nithin Joseph Panicker, Muzamil Ahmad Rather, Manabendra Mandal, and Partha Pratim Sahu. "Green synthesis of cerium oxide nanoparticles using *Dillenia indica* aqueous extract and its anti-oxidant activity." *Bulletin of Materials Science* 46, no. 1 (2022): 3 - 7.
- [22] He, Lulu, Yuanhang Ren, Yingyi Fu, Bin Yue, Shik Chi Edman Tsang, and Heyong He. "Morphology-dependent catalytic activity of Ru/CeO2 in dry reforming of methane." *Molecules* 24, no. 3 (2019): 5 - 26.
- [23] Liu, Yongjun, Tingting Li, Weiwei Chen, Yuanyuan Guo, Lixiang Liu, and Hong Guo. "Hierarchical hollow TiO 2@ CeO 2 nanocube heterostructures for photocatalytic detoxification of cyanide." *RSC Advances* 5, no. 16 (2015): 11733 - 11737.
- [24] Kashyap, Komal, Dakeshwar Kumar Verma, Subrat Kumar Pattanayak, and Fahmida Khan. "Green Synthesized Cerium Oxide Nanoparticles as Efficient Adsorbent for Removal of Fluoride Ion from Aqueous Solution." *Water, Air, & Soil Pollution* 234, no. 3 (2023): 1 - 79.
- [25] Kashyap, Komal, Fahmida Khan, Dakeshwar Kumar Verma, and Sonalika Agrawal. "Effective removal of uranium from aqueous solution by using cerium oxide nanoparticles derived from citrus limon peel extract." *Journal of Radioanalytical and Nuclear Chemistry* (2022): 1 - 11.
- [26] Muduli, Sthitiprajna, Saroj Sekhar Behera, Ranjan Kumar Mohapatra, Pankaj Kumar Parhi, and Tapas Ranjan Sahoo. "Efficient adsorption and antimicrobial application of bio-synthesized porous CeO₂ nanoparticles." *Materials Science and Engineering: B* 290 (2023): 116 275.
- [27] Miri, Abdolhossein, and Mina Sarani. "Biosynthesis, characterization and cytotoxic activity of CeO2 nanoparticles." *Ceramics International* 44, no. 11 (2018): 12642 12647.

- [28] Priya, G. Sai, Abhimanyu Kanneganti, K. Anil Kumar, K. Venkateswara Rao, and Satish Bykkam. "Biosynthesis of cerium oxide nanoparticles using Aloe barbadensis miller gel." *Int J Sci Res Publ* 4, no. 6 (2014): 199 - 224.
- [29] Zhao, Lijuan, Jose R. Peralta-Videa, Cyren M. Rico, Jose A. Hernandez-Viezcas, Youping Sun, Genhua Niu, Alia Servin, Jose E. Nunez, Maria Duarte-Gardea, and Jorge L. Gardea-Torresdey. "CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus)." *Journal of agricultural and food chemistry* 62, no. 13 (2014): 2752 - 2759.
- [30] Khan, Shadab Ali, and Absar Ahmad. "Fungus mediated synthesis of biomedically important cerium oxide nanoparticles." *Materials Research Bulletin* 48, no. 10 (2013): 4134 4138.
- [31] Murugesan, Selvakumar, Devibala Ravichandran, Dinesh Kumar Lakshmanan, Guna Ravichandran, Velusamy Arumugam, Karthik Raju, Karuppasamy Geetha, and Sivasudha Thilagar. "Evaluation of anti rheumatic activity of Piper betel L.(Betelvine) extract using in silico, in vitro and in vivo approaches." *Bioorganic Chemistry*, 103 (2020): 104 - 227.
- [32] Venkateswarlu, Kambham, N. Devanna, and N. B. L. Prasad. "Microscopical and Preliminary Phytochemical Screening of 'Piper betel'." *PharmaTutor* 2, no. 4 (2014): 112 - 118.
- [33] Khan, Atiya Akhtar, Satyendra Prasad Bhatnagar, Barij Nayan Sinha, and Uma Ranjan Lal. "Pharmacognostic specifications of eight cultivars of Piper betle from eastern region of India." *Pharmacognosy Journal* 5, no. 4 (2013): 176 - 183.
- [34] Singha, Irom Manoj, Yelena Kakoty, Bala Gopalan Unni, Mohan Chandra Kalita, Jayshree Das, Ashok Naglot, Sawlang Borsingh Wann, and Lokendra Singh. "Control of Fusarium wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici using leaf extract of *Piper betel L*.: a preliminary study." *World Journal of Microbiology and Biotechnology*, 27 (2011): 2583 - 2589.
- [35] Madhumita, Mitali, Proshanta Guha, and Ahindra Nag. "Extraction of betel leaves (Piper betel L.) essential oil and its bio-actives identification: Process optimization, GC-MS analysis and anti-microbial activity." *Industrial Crops and Products* 138 (2019): 111 - 578.
- [36] Annegowda, H. V., P. Y. Tan, M. N. Mordi, S. Ramanathan, M. R. Hamdan, M. H. Sulaiman, and S. M. Mansor. "TLC-bioautography-guided isolation, HPTLC and GC MS-assisted analysis of bioactives of Piper betle leaf extract obtained from various extraction techniques: In vitro evaluation of phenolic content, antioxidant and antimicrobial activities." *Food Analytical Methods* 6 (2013): 715 726.
- [37] Dwivedi, Binit Kumar, Sunil Kumar, C. Nayak, and B. K. Mehta. "Gas chromatography mass spectrometry (GC - MS) analysis of the hexane and benzene extracts of the Piper betle (leaf stalk)(Family: Piperaceae) from India." *Journal of Medicinal Plants Research* 4, no. 21 (2010): 2252 - 2255.

Catalyst Research Volume 23, Issue 2, December 2023

- [38] Arambewela, Lakshmi, K. G. A. Kumaratunga, and Kalyani Dias. "Studies on piper betle of Sri Lanka." *Journal of the National Science Foundation of Sri Lanka* 33, no. 2 (2005): 133 - 139.
- [39] Gharpure, Saee, Rachana Yadwade, Barnika Chakraborty, Rajani Makar, Pallavi Chavhan, Shweta Kamble, Prarthana Pawar, and Balaprasad Ankamwar. "Bioactive properties of ZnO nanoparticles synthesized using Cocos nucifera leaves." *3 Biotech* 12 (2022): 1 17.
- [40] Osman, Muhamad Faris, Soo Yee Lee, Shahrul Razid Sarbini, Siti Munirah Mohd Faudzi, Shamsul Khamis, Badrul Hisyam Zainudin, and Khozirah Shaari. "Metabolomicsdriven discovery of an introduced species and two Malaysian Piper betle L. Variants." *Plants* 10, no. 11 (2021): 10 - 25.
- [41] Rubel Mozumder, N. H. M., Yeong-Ran Lee, Kyeong Hwan Hwang, Min-Seuk Lee, Eun-Hee Kim, and Young-Shick Hong. "Characterization of tea leaf metabolites dependent on tea (Camellia sinensis) plant age through 1H NMR-based metabolomics." *Applied Biological Chemistry* 63, no. 1 (2020): 1 - 8.
- [42] López-Martínez, Luis M., Hisila Santacruz-Ortega, Rosa-Elena Navarro, Rogerio R. Sotelo-Mundo, and Gustavo A. González-Aguilar. "A 1H NMR investigation of the interaction between phenolic acids found in mango (Manguifera indica cv Ataulfo) and papaya (Carica papaya cv Maradol) and 1, 1-diphenyl-2-picrylhydrazyl (DPPH) free radicals." *PloS one* 10, no. 11 (2015): e0140 242.
- [43] Tatsis, Evangelos C., Sjef Boeren, Vassiliki Exarchou, Anastassios N. Troganis, Jacques Vervoort, and Ioannis P. Gerothanassis. "Identification of the major constituents of Hypericum perforatum by LC/SPE/NMR and/or LC/MS." *Phytochemistry* 68, no. 3 (2007): 383 - 393.
- [44] Panda, R. N., M. F. Hsieh, R. J. Chung, and T. S. Chin. "FTIR, XRD, SEM and solid state NMR investigations of carbonate-containing hydroxyapatite nano-particles synthesized by hydroxide - gel technique." *Journal of Physics and Chemistry of Solids* 64, no. 2 (2003): 193 - 199.
- [45] Exarchou, V., N. Nenadis, M. Tsimidou, I. P. Gerothanassis, A. Troganis, and D. Boskou. "Antioxidant activities and phenolic composition of extracts from Greek oregano, Greek sage, and summer savory." *Journal of agricultural and food chemistry* 50, no. 19 (2002): 5294 5299.