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Abstract 
In the present article, the investigators take into consideration a rectangular object, particularly an 
infinitely varying slab, and attempt to study the temperature flow, displacement function, stresses, 
and deflection function under specific boundary-based limitations. The expression of temperature, 
stress and deflection are obtained mathematically by applying conventional integral transformation 
methods. 
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Many disciplines that deal with the design and production of structural materials by taking high 
heating into consideration can benefit greatly from the research of temperature, displacement, 
stress, and deflection in diverse bodies. Furthermore, the temperature flow provides a precise and 
trustworthy structural analysis of the body; as a result, the structural design of spacecraft may 
benefit from this kind of research. 
 
Direct thermoelastic modelling under thermal shock was investigated by Tanigawa and 
Komatsubara [1], Vihak et al. [2], and Adams and Bert [3] by taking rectangular plates into 
consideration. At various environmental conditions and temperatures Khobragade and Wankhede 
[4], Khobragade, and Durge [5, 6] frame inverse thermoelastic models for various solids. The 
quasi-static stresses in a thin circular plate caused by transient temperature applied across the upper 
face throughout a circle's circumference have been examined by Roychaudhari [7]. In their 
discussion of the effects of stress and temperature distribution under various heating sources, Choi 
et al. [8] took into account objects with a rectangular shape. Thakare and Khobragade [11] 
investigated the steady-state thermoelastic problem to determine the temperature distribution, 
displacement function and thermal stresses of semi-infinite rectangular plate. Also some other 
researchers [12 to 15] also contributed to the development of the field. 
This work, deals with study of transient thermoelastic problem to determine the temperature, 
displacement, stress distribution and thermal deflection of an infinitely varying slab occupying the 

space D: 
3

],,[ Rzyx  : x    ; y    , h x h    with the stated boundary conditions. The 

heat conduction equation is solved with the help of integral transform techniques. The results are 
obtained in the form of infinite series. 
 
2. Deflection and thermal momentum 
Consider a thick isotropic rectangular plate occupying the space D . The differential equation 

satisfied by the deflection ( , , )t    [6] is 

 
2 ( , , ) (1 ) ( , , ) 0u

TM t D t         
                        

(1) 

 

Where   is the Poisson’s ratio of the material, TM  denote the thermal momentum of the plate and 

D  denote the flexural rigidity, 

where 
2 2

2
2 2

d d

d d 
    

And the resultant thermal momentum TM  is defined as 

( , , ) . ( , , , )
h

T

o

M t E zT z t dz                                     (2) 

Where   and E  are the coefficient of liner expansion, Young’s modulus respectively. Since the 
edge of the rectangular plate is fixed and clammed, 
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0


z


at ,z h h                                                              (3) 

 
2. Heat transfer equation 
The temperature of the plate at time t satisfying the differential equation 

 
2 2 2

2 2 2

1T T T T

z k t 
   

  
   

 (4) 

 
Where k  is the thermal diffusivity to the material of the plate, 
Subject to the initial and boundary conditions: 
 

0( , , , ) ( , , )T z o T z     (5) 

( , , , )
0

T z t



 
 

 
  

 (6) 

( , , , )
0

T z t



 
 

 
  

 (7) 

 

( , , , )
0

T z t



 
 

 
  

 (8) 

 

( , , , )
0

T z t



 
 

 
  

 (9) 

 

1

( , , , )
( , , )

z h

T z t
T k f t

z

   


    
 (10) 

 

2

( , , , )
( , , )

z h

T z t
T k g t

z

   


    
 (11) 

 
Equation (1) to (11) constitute the mathematical formulation of the problem under consideration. 
 
3. Evaluation of heat transfer 
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Applying Fourier double cosine transform and Marchi-Fasulo transform formula to equation (4) 
and on utilizing their corresponding inversion formula subjected to different constraints in 
equations (5) to (11), we get 

   2
02 2

, , 0

( ) ( ) ( )
( , , , ) exp exp 2 ( )n

l m n n

p z f g f g
T z t T q kt j ax by

q q
  







             
     

  

Where 2 2 2 2 24 ( )q p a b                                                                                    (12) 

2 ( )
h

n n

h

P d  


   

( ) cos ( ) sin( )n n n n nP Q a W a     

3 4 3 4( ) cos( ) ( ) sin( )n n n nQ a a a a a        

3 4 4 3( ) cos ( ) ( ) sin( )n n n nW a a a a a        

 

Equation (12) is the desired solution of the given problem with 143   ,  3 1 4 2,k k   . 

 
4. Displacement and stress function 

The displacement componentsu ,u  and zu  in axial directions respectively are in the integral form 

as 
2 2 2

2 2 2
1/

u u u
u E v T d

z  
 

    
         
                                (13) 

2 2 2

2 2 2
1/

u u u
u E v T d

z  
 

    
         
                                 (14) 

2 2 2

2 2 2
1/z

u u u
u E v T dz

z


 
    

         
                                 (15) 

 
The stress components in terms of U are given by 

2 2

2 2

U U

z

 

 
 

                                                                            (16)                                                 

2 2

2 2

u u

z

 

 
 

                                                                              (17) 

2 2

2 2zz

u u
 
 

 
 

                                                                            (18) 

 
Where U  is the Airy’s function which satisfy the following relation                                                               
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22 2 2 2 2 2

2 2 2 2 2 2
U E T

z z


   
        

                
        (19) 

 
5. Evaluation of Airy’s function 
Substituting the value of (12) in equation (19) one obtains 

   2
02 2 2

, , 0

( )1 ( ) ( )
( , , , ) exp exp 2 ( )n

l m n n

p z f g f g
U z t T q kt j a b

q q q
    







             
     



  

(20) 

 
6. Stress functions 
Substituting the value of (20) in equations (16), (17) and (18) one obtains 

 
2

2 2
02 2 2

, , 0

4 ( ) ( ) ( )
( ) expn

l m n n

p z f g f g
F z b T q kt

q q q








                    
  exp 2 ( )j a b                  (21) 

 
2

2 2
02 2 2

, , 0

4 ( ) ( ) ( )
( ) expn

l m n n

p z f g f g
F z a T q kt

q q q








                    
  exp 2 ( )j a b             (22) 

 
2
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zz
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p z f g f g
F z b T q kt

q q q








                    
  exp 2 ( )j a b           (23) 

 
7. Evaluation of thermal deflection 

Substituting the value of temperature distribution  ( , , , )T z t   from equation (12) to the equation 

(2) we obtain the expression for thermal momentum as 
 

 
, , 0

sin ( ) cos( )
( , , ) sin .[( )( )]

8 (1 )
n n n n

l m n n

Q a W aK E m z
t z h z h

D h

    
  





         


    2
02 2

( ) ( )
exp exp 2 ( )

f g f g
T q kt j a b

q q
  

           
   

                           

(24)

  
Conclusion 
Using integral transform techniques, mathematical representations of temperature, displacement, 
stress distribution, and thermal deflection are assessed in an indefinitely variable rectangular object 
exposed to various constraints.  The solution for the series is convergent. The acquired temperature 
distribution stress and deflection can be used to create practical machines or structures for use in 
applications in engineering. 
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