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Abstract 
Artificial neural networks have been used to overcome obstacles seen in the fields, including 
healthcare, business, and industry. One significant shortcoming of ANNs is the need for a 
systematic method to model design. The majority of the literature suggests a time-consuming trial-
and-error technique for parameter setting. The amount of momentum, neurons, transfer function, 
training and learning rate technique all influence the ANN model's accuracy. We use a design of 
the experimental technique of Taguchi in this research to find the best parameters set for an ANN 
trained with feed-forward back-propagation. To show the approach's implementation, we give a 
case study of a specific fuel consumption prediction model for a compression ignition engine. The 
optimal ANN parameter values are calculated based on the performance statistics after training the 
network. Compared to random parameter values, the ANN performs better when the Taguchi 
technique is used to optimize the parameters. 
Keyword: Taguchi method, Model selection, neural network optimization, artificial neural 
network, ANN parameters. 
  
Introduction 
Compression ignition (CI) engines have dominated as a source of mechanical power, imparting 
their important and useful effect in many sectors such as agriculture, industries, and vehicles. 
Because of the well-known fact that petroleum reservoirs are rapidly depleting, alternative fuel is 
the fastest-developing fuel replacement in the current environment. Based on the output parameter, 
Specific fuel consumption can be used to compare different engine types. During the training 
phase, ANN parameters such as the number of hidden nodes, hidden layers, the transfer functions 
and the learning rate are established. It is impossible for the ANN model to be successful without 
these parameters. The approach of trial and error is utilized in order to determine the appropriate 
values for the ANN parameters. Using the FEA data, Patel and Bhatt created an ANN model. The 
traditional back-propagation approach has been shown to be the most effective for training the 
ANN model. The non-linear mapping of output and input parameters is accomplished by the 
utilization of a multi-layered cognitive network. Production time, money, and resources are all 
reduced with the Finite Element Analysis - ANN hybrid model.[1].Back-propagation ANN was 
proposed by chrefler and Lefik for numerically modelling the fundamental behavior of the 
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physically non-linear object, and their model proved appropriate even for inelastic, complicated, 
non-linear behavior [2]. Rao and Babu illustrated how ANNs might be used to design beams 
applied to shear stresses and moments [3]. Gudur and Dixit predicted the position of the velocity 
field and neutral point using ANN. Data for training is provided using the adamant-plastic FEA 
algorithm. Their research produced reliable responses that were suitable for use in optimization 
applications. [4]. ANNGaT, an algorithm for training, was first suggested by Castellani and 
Rowlands [5]. The weights and topology of the ANN algorithm were developed at the same time. 
According to their findings, there were no variations in accuracy across ANN topologies' hidden 
layers. Sholahudin and Han used an advanced ANN model to analyze input parameters. Their 
findings demonstrate that Taguchi's technique can successfully minimize experimental input 
parameters. Furthermore, the advanced ANN model accurately estimates instantaneous heating 
demands with few inputs [6].Patel and Bhatt optimized Eicher 11.10 chassis structure’s weight. 
They employed a technique of Taguchi in conjunction with FEA to reduce tests. This strategy may 
reduce production costs, resources and time [7]. To optimize the burden of the chassis frame using 
response surface methodology (RSM) and FEA, Bhatt and Patel created a von Mises stress (VMS) 
mathematical hybrid model. The VMS regression equation was created utilizing the FEA findings 
of several chassis frame variations [8]. Patel and Bhatt examined MLR and RSM models to predict 
the chassis frame's stress. From finding RSM's forecasts shows better results than the MLR model's 
predictions [9]. Stojanovi 'c et al. explore the tribological behaviour of aluminium hybrid 
composites using Taguchi's approach. The coefficient of friction and wear rate was predicted using 
ANN [10].ANN performance is affected by network training settings as well as network 
architecture parameters. No standard ANN model relevant to all problems has been developed. As 
a result, the optimal parameter values for each situation must be found experimentally. The 
statistical Taguchi method was used for parameters influencing the process and their results to 
predict the relationship. Several writers have used the DOE of the Taguchi path to decide ANN 
parameters [11–19]. Tortum et al. [11] optimized data transformation, grounding data percentage, 
layer neuron number, and activation function to increase back-propagation algorithm accuracy. 
Packianather et al. studied the back-propagation neural network (BPNN) andthe influence of 
design variables and the performance of veneer wood inspection [13].Roy explained utilising the 
Taguchi approach to optimise an ANN's design variables. Kuo and Wu created polymer blend 
predicted models to improve network architecture design flaws using a BPNN and Taguchi's 
approach. The ANN predicted model's goal was to determine the link between control surface 
roughness and parameter settings in the coating process of the film[14]. Tannock and Sukthomya 
employed Taguchi's method to optimize ANN parameters in a multilayer perceptron network 
trained with back-propagation in the difficult creation process.[15].Laosiritaworn and 
Chotchaithanakorn investigated the best parameters for an ANN trained to represent data from 
ferromagnetic materials. They improved the learning pace and momentum. Because [16]. For 
ANNs, Yum and Jung developed a crucial criteria building method for optimizing parameters 
including the number of first- and second-layer neurons, momentum, and learning rate. [17]. 
Madi'c and Radovanovi'c used Taguchi's DOE approach to optimise a trained model of ANN using 
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the Levenberg-Marquardt algorithm. The Taguchi-optimised ANN model produced a high 
prediction accuracy [18].In the wire cut electron discharge machining process for reducing the 
roughness of the surface, Kazancoglu et al. proposed utilising Taguchi's approach in conjunction 
with BPNN. Anticipated values were quite close to the trial values [19].The impact of various 
parameters on the efficiency of wavelet-ANFIS and wavelet-ANN hybrid models were studied by 
Moosavi et al.. Every model is composed of a number of layers, and Taguchi's method uncovered 
the most optimal structure prototypes. [20]. Adalarasan and colleagues investigated the drilling 
properties of 2ndgeneration hybrid composites. Taguchi-based response surface approach using 
L18 orthogonal array used to optimize the drilling settings [21]. Khoualdia et al. suggested an 
observing and verification system for gear-bearing combination failure prediction based on an 
ANN model. Grey-Taguchi method and Taguchi standard orthogonal array were employed as 
multi-objective optimisation methodologies to discover the optimum ANN model design [22]. 
Padhi et al. employed fused deposition modelling to create complicated pieces (FDM). Taguchi's 
approach with ANNassesses the precision of the dimensions of the FDM-fabricated components 
under different operating situations. The projected values from models agreed with the trial data 
[23].The end milling procedure for Al2024-T4 work piece material was improved by Sahare et al. 
The cutting fluid flow rate, feed per tooth, cutting speed, and depth of cut were all input process 
factors. Material removal rates, the roughness of the Surface, and cutting force were the response 
parameters. The finding showed ANN paired with Taguchi's approach was appropriate for 
amendment[24].Taguchi's design of experiments technique was used by Patel and Bhatt to 
discover the parameter’s optimal set of ANN trained via feed-forward back-propagation. A 
prediction model of equivalent stress for an automotive chassis shows the approach's 
implementation. Optimum values of the ANN parameters are calculated based on the performance 
statistics after the network has been trained. Compared to random parameter values, the ANN 
performs better when the Taguchi technique optimises the parameters [25]. 
  
Materials and Methods 

Table 1: Experimental data sets for ANN training [Patel & Bhatt, 2016] 

Sr. No 
Experimental 

Run 

Factors Target 
SFC 

(kg/kWh) 
Types 
of fuel 

CR 
IP 

(bar) 
Load 
(kg) 

Types of Fuel:- 1 = Diesel, 2 = LDPE PO, 3 = HDPE PO, 4 = PP PO 

Training Data Sets 

1 2 1 15 200 4.12 0.7631 

2 3 1 15 220 8.13 0.4781 

3 4 1 15 240 12.33 0.4092 

4 5 1 16 180 3.88 0.7637 

5 7 1 16 220 12.22 0.4414 

6 8 1 16 240 0.13 15.9842 

7 9 1 17 180 8.1 0.4814 
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8 11 1 17 220 0.23 8.2872 

9 12 1 17 240 4.22 0.7088 

10 13 1 18 180 12.25 0.4389 

11 14 1 18 200 0.23 8.9635 

12 16 1 18 240 8.22 0.4744 

13 17 2 15 180 0.23 8.5068 

14 18 2 15 200 4.25 0.6188 

15 19 2 15 220 8.28 0.4642 

16 21 2 16 180 4.22 0.5427 

17 23 2 16 220 12.32 0.3997 

18 24 2 16 240 0.17 11.7309 

19 25 2 17 180 8.23 0.4458 

20 26 2 17 200 12.42 0.3926 

21 28 2 17 240 4.13 0.6368 

22 29 2 18 180 12.33 0.3215 

23 30 2 18 200 0.13 13.6036 

24 32 2 18 240 8.21 0.4026 

25 33 3 15 180 0.12 18.0943 

26 35 3 15 220 8.13 0.4409 

27 36 3 15 240 12.21 0.3952 

28 37 3 16 180 4.23 0.7079 

29 38 3 16 200 8.19 0.3935 

30 40 3 16 240 0.23 9.3343 

31 42 3 17 200 12.31 0.3746 

32 43 3 17 220 0.14 14.2211 

33 44 3 17 240 4.29 0.6267 

34 45 3 18 180 11.73 0.4401 

35 47 3 18 220 4.14 0.7291 

36 48 3 18 240 8.22 0.4534 

37 49 4 15 180 0.23 9.6329 

38 50 4 15 200 4.13 0.6572 

39 52 4 15 240 12.1 0.3296 

40 54 4 16 200 8.12 0.3882 

41 55 4 16 220 12.32 0.3167 

42 56 4 16 240 0.26 8.5447 

43 58 4 17 200 11.92 0.3070 

44 59 4 17 220 0.24 8.3119 

45 60 4 17 240 4.24 0.6332 

46 61 4 18 180 12.11 0.3285 

47 63 4 18 220 4.07 0.6896 

48 64 4 18 240 8.31 0.3809 
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Validation Data Sets 

49 1 1 15 180 0.13 17.4198 

50 6 1 16 200 8.23 0.4742 

51 10 1 17 200 12.33 0.4206 

52 15 1 18 220 4.22 0.7064 

53 20 2 15 240 12.23 0.3440 

54 22 2 16 200 8.11 0.4124 

55 27 2 17 220 0.24 6.7708 

56 31 2 18 220 4.33 0.5671 

57 34 3 15 200 4.19 0.6044 

58 39 3 16 220 12.35 0.3498 

59 41 3 17 180 8.29 0.4878 

60 46 3 18 200 0.15 14.3220 

61 51 4 15 220 8.24 0.4005 

62 53 4 16 180 4.23 0.6296 

63 57 4 17 180 8.23 0.3843 

64 62 4 18 200 0.2 9.9480 

  
2.1 Parameter of ANN for Optimization 
With Taguchi’s DOE method, ANN optimization for specific fuel consumption output parameters 
of compression ignition engines is taken in the current work. 
2.1.1 Observation Data 
An orthogonal array, often known as an orthogonal array (OA), is a specially built table that is 
utilized in the process of developing a design of the experiment. The utilization of these tables 
makes it possible to conduct more consistent testing. For the compression ignition engine, 48 
parameter value combinations are tested. The specific fuel consumption for each parameter value 
combination is calculated using a compression ignition engine.ANN has four neurons in its input 
layer, each of which corresponds to one of four topological characteristics of a compression 
ignition engine. (load %, injection pressure, fuel types, and compression ratio)and 1 neuron in the 
output layer related to the particular fuel consumption (SFC). 
2.1.2 Parameters for Neural Network  
According to the available research, the design control factors that have an effect on ANN's 
performance may be broken up into two categories. 

 First, the hidden layer neurons, the training technique, and the hidden and output 
layer transfer functions are all used as ANN construction parameters; 

 The ANN learning parameters that include learning rate, decrement and increment factors, 
and momentum are as follows:. A random weight initialization is regarded noise factor. Table 
2 shows the design parameters of ANN and their related levels. This design issue comprises 
seven primary parameters, one of which has two levels while the other six have three. 
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Considering all potential combinations of the seven factors results in a total of  21 ×36 = 1458 
distinct experiment sets. 

 
Table 2: parameter and levels of ANN architectural and training 

Parameter Explanation of Parameter Level 1 Level 2 Level 3 
A Training Algorithm trainscg trainlm --- 
B Transfer function in a hidden layer tansig logsig purelin 
C Factor for Increment 5 10 15 
D Factor for Decrement 0.05 0.1 0.2 
E Learning Rate 0.001 0.01 0.1 
F Momentum, μ 0.1 0.3 0.5 
G No. of  neurons in input hidden layer 2 6 10 

  
2.1.3 Designs for Experiments (Taguchi Technique) 
It is impracticable to test all of the above combinations. Through the application of Taguchi's OA 
approach, it is possible to greatly reduce the necessary number of tests. The degree of freedom 
(DOF) for ANN's seven parameters is 1+ (6×2) =13. Thus, we employ a mixed OA L18 (21 ×36) 
with 17 DOFs for experimentation, higher than the ANN design parameter’s DOFs. As shown in 
Table 3, our experimental parameter settings are related to every row of the L18 OA. 
  

Table 3: Taguchi’s orthogonal array 

Exp. No. A B C D E F G 
1 1 1 1 1 1 1 1 
2 1 1 2 2 2 2 2 
3 1 1 3 3 3 3 3 
4 1 2 1 1 2 2 3 
5 1 2 2 2 3 3 1 
6 1 2 3 3 1 1 2 
7 1 3 1 2 1 3 2 
8 1 3 2 3 2 1 3 
9 1 3 3 1 3 2 1 

10 2 1 1 3 3 2 2 
11 2 1 2 1 1 3 3 
12 2 1 3 2 2 1 1 
13 2 2 1 2 3 1 3 
14 2 2 2 3 1 2 1 
15 2 2 3 1 2 3 2 
16 2 3 1 3 2 3 1 
17 2 3 2 1 3 1 2 
18 2 3 3 2 1 2 3 

As a result, 18 tests to assess the accuracy of ANN performance [13].Selecting optimal training 
and design parameters for an ANN model is the primary focus of the Taguchi-based optimization 
technique. The performance of the ANN is evaluated using the performance index (PI), which is 
described by Equation 1 [18]. 
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PI = R – RMSE   (1) 

Where R is the correlation coefficient acquired using whole data between the ANN predictions 
and the experimental results, and Erms is the RMSE obtained using entire data. Because of the 
larger-the-better problem of PI accuracy, the optimal S/N ratio is described by Eq. 2 [13]: 

S/N Ratio= −10 logଵ଴ ൬
ଵ

୬
∑

ଵ

୷౟
మ

୬
୧ୀଵ ൰                                    (2) 

The values of the S/N ratios and the PI for every experiment are shown in Table 4. 
3 Results and Discussion 
3.1 Analyses of Results 
Figures 1 and 2 show the S/N ratio data and mean data for the various parameters. The optimal 
parameter configuration, shown as a circle, yields the highest performance index. According to 
Table 4 and Figure 2, the optimal values for the ANN parameters are A2B2C1D3E3F2G3.. The 
best model of ANN is trained using the Levenberg-Marquardt (LM) method using 0.001 as the 
starting learning rate, μ =0.1 for momentum, 0.05 for decrement, and 5 for Increment. The transfer 
function of tansigis used in a hidden layer, while the transfer function of purelin is used in the 
output layer. The buried layer has 6 neurons. Table 5 reveals that the hidden layer's transfer 
function has the biggest effect on the compression ignition engine's anticipated specific fuel 
consumption, while the learning rate has the least effect. Input layer neuron count, hidden-layer 
transfer function, deceleration factor, and momentum. The parameters are, in increasing order of 
importance, the factor for Increment, the Training Algorithm, and the Learning Rate. 
3.2 Confirmation Experiment 
Taguchi's technique relies heavily on the finalization of the experiment. The confirmation test is 
unnecessary if the optimum set is already in the OA. However, the optimal design discovered in 
this experiment is separate from the OA, necessitating a confirmation test. The 
A2B2C1D3E3F2G3 parameter value combination is used to construct and train the best ANN 
model and evaluate its performance. 

 
Table 4: Analysis of Taguchi’s Technique 

Exp. No. R2 MSE R RMSE 
PI= 

R-RMSE 
SNRA1 

1 0.9975 0.0016 0.9987 0.0405 0.9582 -0.3709 
2 1.0000 0.0000 1.0000 0.0050 0.9950 -0.0433 
3 0.9999 0.0001 1.0000 0.0075 0.9925 -0.0655 
4 1.0000 0.0000 1.0000 0.0031 0.9969 -0.0266 
5 0.9975 0.0016 0.9988 0.0401 0.9586 -0.3670 
6 0.9999 0.0001 0.9999 0.0098 0.9901 -0.0865 
7 0.7435 0.1454 0.8623 0.3813 0.4810 -6.3577 
8 0.7435 0.1454 0.8623 0.3813 0.4810 -6.3577 
9 0.7435 0.1454 0.8623 0.3813 0.4810 -6.3577 

10 1.0000 0.0000 1.0000 0.0055 0.9945 -0.0478 
11 1.0000 0.0000 1.0000 0.0025 0.9975 -0.0219 
12 0.9989 0.0008 0.9994 0.0274 0.9720 -0.2464 
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13 1.0000 0.0000 1.0000 0.0025 0.9975 -0.0218 
14 0.9994 0.0000 0.9997 0.0065 0.9932 -0.0595 
15 0.9992 0.0005 0.9996 0.0233 0.9763 -0.2086 
16 0.7435 0.1454 0.8623 0.3813 0.4810 -6.3577 
17 0.7435 0.1454 0.8623 0.3813 0.4810 -6.3577 
18 0.7435 0.1454 0.8623 0.3813 0.4810 -6.3577 

 

 
Fig. 1 Performance index mean plot for various parameters. 

  
Figure 3 depicts the LM10TP model's training parameters. Back-propagation of ANN trains with 
the LM algorithm and has 6 neurons in the hidden layer. Mean Square Error is used to assess 
performance.The ANN uses the tansig transfer function between the input and hidden layers, and 
the purelin transfer function between the hidden and output layers. The LM10TP model's training 
performance (MSE) curve in relation to time is shown in Figure 4.After 1069 epochs, the training 
was stopped because the performance goal was achievedIt is a useful analytical instrument for 
evaluating the progression of training.The LM10TP model is retrained for 1069 epochs after initial 
training, attaining an MSE of 2.6592×10−06at the training end.Validation datasets that differ from 
training data previously provided to the network are employed to assess the ANN's prediction 
accuracy. We employ the following statistical approaches for evaluation: mean squared error 
(MSE), coefficient of multiple determination (R2) values and root mean squared error (RMSE), 
Eqs. 3, 4, and 5 are used to calculate these values. The training rates of error and validation are 
summarized in Table 6. 
  

Table 5: Effect of Different Parameters (Larger is better) 
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Level A B C D E F G 

1 -2.2259 -0.1326 -2.1971 -2.2239 -2.2090 -2.2401 -2.2932 

2 -2.1866 -0.1283 -2.2012 -2.2323 -2.2067 -2.1488 -2.1836 

3 * -6.3577 -2.2204 -2.1624 -2.2029 -2.2297 -2.1419 

Delta 0.0393 6.2293 0.0233 0.0699 0.0061 0.0914 0.1513 

Rank 5 1 6 4 7 3 2 

 
Fig. 2 Performance index S/N ratios for various parameter settings 

 
Fig. 3 LM10LP model training 
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Figure 4: LM10LP model training performance graph 

MSE = ቈ
ଵ

୬
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୨ୀଵ
቉ ,               (3) 

RMSE = ቈ
ଵ

୬
෍ หa୨ − p୨ห
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୨ୀଵ
቉

ଵ/ଶ

,             (4) 

 Rଶ = 1 − ቎
෍ ൫ୟౠି୮ౠ൯

మ౤

ౠసభ

෍ ൫୮ౠ൯
మ౤

ౠసభ

቏ .                (5) 

  
The LM10TP architecture's training data MSE, RMSE, and R2 values are 2.6592×10−06, 0.0031, 
and 1, respectively. For the LM10TP architecture, the validation data MSE, RMSE, and R2 values 
are 3.5389×10−05, 0.0059, and 0.9999. Here ANN successfully predicts particular fuel 
consumption for both the training &validation datasets. No sign of over-fitting due to the same 
findings for datasets. While an ANN's performance may be judged using errors in the testing and 
training datasets, studying the network reaction further is typically beneficial. Analysing 
regression between the network response and the relevant objectives is possible. The LM10TP 
model linearly closely fits the given target values, as shown in Fig. 5. 
  

Table 6: Errors of ANN data sets 

Sr. 
No 

Experim
ental 
Run 

Factors Target 
SFC 
(kg/k
Wh) 

Predict
ed SFC 
(kg/kW

h) 

Error 
(kg/kW

h) 

MSE 
(kg/kWh) 

RMS
E 

(kg/k
Wh) 

R2 Typ
es of 
fuel 

C
R 

IP 
Lo
ad 

Training Data Sets 

1 2 1 15 200 4.12 0.7631 0.7630 0.0001  
2.

65
92

×
   

0.
00

16
  1 

2 3 1 15 220 8.13 0.4781 0.4301 0.0480 
3 4 1 15 240 12.33 0.4092 0.4100 -0.0008 
4 5 1 16 180 3.88 0.7637 0.7384 0.0254 
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5 7 1 16 220 12.22 0.4414 0.4412 0.0002 
6 8 1 16 240 0.13 15.9842 15.9850 -0.0007 
7 9 1 17 180 8.1 0.4814 0.4739 0.0075 
8 11 1 17 220 0.23 8.2872 8.2872 -0.0001 
9 12 1 17 240 4.22 0.7088 0.7094 -0.0006 

10 13 1 18 180 12.25 0.4389 0.4067 0.0322 
11 14 1 18 200 0.23 8.9635 8.9622 0.0014 
12 16 1 18 240 8.22 0.4744 0.4748 -0.0004 
13 17 2 15 180 0.23 8.5068 8.5085 -0.0017 
14 18 2 15 200 4.25 0.6188 0.6519 -0.0331 
15 19 2 15 220 8.28 0.4642 0.4726 -0.0084 
16 21 2 16 180 4.22 0.5427 0.5344 0.0083 
17 23 2 16 220 12.32 0.3997 0.4231 -0.0234 
18 24 2 16 240 0.17 11.7309 11.7296 0.0013 
19 25 2 17 180 8.23 0.4458 0.4763 -0.0305 
20 26 2 17 200 12.42 0.3926 0.4242 -0.0316 
21 28 2 17 240 4.13 0.6368 0.6341 0.0028 
22 29 2 18 180 12.33 0.3215 0.3289 -0.0074 
23 30 2 18 200 0.13 13.6036 13.6027 0.0009 
24 32 2 18 240 8.21 0.4026 0.4035 -0.0009 
25 33 3 15 180 0.12 18.0943 18.0942 0.0001 
26 35 3 15 220 8.13 0.4409 0.4264 0.0145 
27 36 3 15 240 12.21 0.3952 0.3763 0.0189 
28 37 3 16 180 4.23 0.7079 0.7073 0.0006 
29 38 3 16 200 8.19 0.3935 0.4193 -0.0258 
30 40 3 16 240 0.23 9.3343 9.3338 0.0005 
31 42 3 17 200 12.31 0.3746 0.4011 -0.0265 
32 43 3 17 220 0.14 14.2211 14.2233 -0.0021 
33 44 3 17 240 4.29 0.6267 0.6340 -0.0073 
34 45 3 18 180 11.73 0.4401 0.4096 0.0305 
35 47 3 18 220 4.14 0.7291 0.7236 0.0055 
36 48 3 18 240 8.22 0.4534 0.4545 -0.0011 
37 49 4 15 180 0.23 9.6329 9.6334 -0.0005 
38 50 4 15 200 4.13 0.6572 0.6589 -0.0016 
39 52 4 15 240 12.1 0.3296 0.3268 0.0028 
40 54 4 16 200 8.12 0.3882 0.3855 0.0027 
41 55 4 16 220 12.32 0.3167 0.3122 0.0045 
42 56 4 16 240 0.26 8.5447 8.5437 0.0010 
43 58 4 17 200 11.92 0.3070 0.3039 0.0032 
44 59 4 17 220 0.24 8.3119 8.3118 0.0000 
45 60 4 17 240 4.24 0.6332 0.6341 -0.0009 
46 61 4 18 180 12.11 0.3285 0.3416 -0.0131 
47 63 4 18 220 4.07 0.6896 0.6907 -0.0011 
48 64 4 18 240 8.31 0.3809 0.3764 0.0044 
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Validation Data Sets 

4
9 1 1 15 180 0.13 17.4198 17.452

1 -0.0323 

 
3.

53
89

 ×
 1

0-5
  

0.
00

59
  

0.
99

99
 

5
0 6 1 16 200 8.23 0.4742 0.4725 0.0016 

5
1 10 1 17 200 12.33 0.4206 0.4586 -0.0380 

5
2 15 1 18 220 4.22 0.7064 0.7520 -0.0455 

5
3 20 2 15 240 12.23 0.3440 0.3684 -0.0244 

5
4 22 2 16 200 8.11 0.4124 0.4047 0.0077 

5
5 27 2 17 220 0.24 6.7708 6.8276 -0.0567 

5
6 31 2 18 220 4.33 0.5671 0.5552 0.0119 

5
7 34 3 15 200 4.19 0.6044 0.5803 0.0241 

5
8 39 3 16 220 12.35 0.3498 0.3035 0.0463 

5
9 41 3 17 180 8.29 0.4878 0.4460 0.0418 

6
0 46 3 18 200 0.15 14.3220 14.339

7 -0.0176 

6
1 51 4 15 220 8.24 0.4005 0.3637 0.0367 

6
2 53 4 16 180 4.23 0.6296 0.6962 -0.0667 

6
3 57 4 17 180 8.23 0.3843 0.2251 0.1592 

6
4 62 4 18 200 0.2 9.9480 9.9650 -0.0170 

 

 
Figure 5: Linear Fitting LM6TP Model in Testing and Training 
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It suggests LM10TP model is best fitted for high-precision specific fuel usage. In training and 
validation, the LM10TP model's anticipated fuel consumption is compared to the actual values, as 
illustrated in the above figure. Figure 6 demonstrates how well the ANN-predicted outcomes 
match the actual values. 

 

 
Figure 6: ANN predicted Vs Actual result in Validation and Training 
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4. Conclusions 
This research aims to apply Taguchi's approach to the parameters development of ANN. The L18 
Orthogonal Array was used to organise the seven ANN architectural and training characteristics 
that were found. Analyses demonstrate that the hidden layer transfer function (B) greatly impacts 
ANN prediction performance, while the learning rate (E) has the least. This supports the earlier 
findings of Tortum et al. [11]. 
1. The optimal ANN model design was discovered to include 10 hidden neurons in the hidden 
layer. Analysis reveals that increasing the number of neurons in a hidden layer harms ANN 
performance. This observation confirms Madi'c and Radovanovi'c's [18] conclusion that having 
numerous neurons in the 1st hidden layer is undesirable when preparing ANNs using the LM 
approach. 
2. The optimum ANN model is an ANN trained with the LM method with 0.001 as the initial 
learning rate and μ =0.1 as the momentum, 0.05. There are ten hidden neurons that are undetectable 
to the outside world, the transfer function of purelin at the output layer, and the act as the decrement 
factor and the increment factor, respectively. 
3 In training, the coefficient of determination R2, root mean square error and mean square error 
values for the LM10TP architecture are 1, 0.0016 and 2.6592×10−06, respectively. For randomly 
chosen validation datasets, the mean square error, root mean square error, and coefficient of 
determination R2 for the LM10TP architecture are 0.9999, 0.0059 and 3.5389×10−05, 
respectively. This shows ANN successfully predicts the particular fuel consumption for the 
training and validation datasets, with no sign of over-fitting due to the same findings for both 
datasets. 
4. Using a comparably modest and time-saving experiment, Taguchi's technique may be 
effectively utilized in ANN training and design to generate an optimal ANN model. 
5. For the Various ANN applications current research paper’s methodology can be used. 
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