Volume 23, Issue 2, November 2023

# A BOON IN DISGUISE; PLANTS HAVING IMMUNOMODULATORY ACTIVITY!!! (SCIENCE HAS ALWAYS EVOLVED WITH NATURE)

### Khusbhu Choudhary<sup>1</sup>

Department of Pharmacy, Krishna Pharmacy College, Bijnor, Uttar Pradesh-246701, India.

## Mrs. Deepika pal<sup>2</sup>

Department of Pharmacy, Krishna Pharmacy College, Bijnor, Uttar Pradesh-246701, India.

### Dr. Ankit Kumar Saini<sup>3</sup>

Department of Pharmacy, Krishna Pharmacy College, Bijnor, Uttar Pradesh-246701, India.

#### \*Corresponding Author: Khusbhu Choudhary

\*Department of Pharmacy, Krishna Pharmacy College, Bijnor, Uttar Pradesh, India chkhushboo011@gmail.com

#### Abstract

Immunomodulation is the process of altering a living organism's immune system through functional modifications. You may become less immune-friendly or more immune-friendly as a result. Immunomodulators, which assist in regulating the immune system, are available for purchase. Accordingly, an immunomodulator promotes optimal function of the immune system in the body. Things known as immunomodulators alter how your body reacts to external stimuli. They fortify the body, aiding in the defence against illness. The precise balance between your body's effector and regulatory cells determines how well your immune system functions. In cases where this process is out of balance, illness may ensue. Comprising a multitude of distinct cell types, the immune system functions to protect the body against pathogens, fungi, viruses, bacteria, and cancer cells.

Keywords: Immunoglobulin, Alzheimer Disease, Immunomodulators, leukocytosis, Acetyl cholinesterase

# INTODUCTION IMMUNOMODULATIORS

A class of medications known as "immunomodulators" modifies the immune system's response in one way or another. They can be described in two ways: intrinsic and extrinsic. The immune system's functionality can be changed by combining immunosuppressants, immunostimulants, and tolerogens [1].

#### Immunostimulant

Immunostimulants or immunostimulators are substances that stimulate or raise immune system component activity. One such instance is granulocyte macrophage colony-stimulating factor. Immunostimulants can be divided into two main groups:

1) Specific immunostimulant provides antigenic specified in the immune response, such as vaccines or any antigen that can be found

**2)** Non- specific immunostimulants - Non-specific immunostimulators and adjuvants, for instance, function despite lacking particular antigenic characteristics. Adjuvants, for example, stimulate immune system components without specific antigenic characteristics, but they can enhance the immunological response to another antigen. 21 Many of the chemicals found in the body are not particular immunostimulators. For instance, it is believed that the innate and adaptive immune systems of the body function better when female sex hormones are present. The body's immune system may also be impacted by other hormones such prolactin, growth hormone, and vitamin D [2].

#### **IMMUNOSUPPRESSANT**

Drugs classified as immunosuppressive agents inhibit or reduce the function of the immune system. Immunosuppressive therapy uses them to reduce the body's ability to fight off infections.

- 1) Ensure that organ transplants (heart, kidney, liver, etc.) are not rejected.
- 2) Address autoimmunity or conditions that are most likely to result from it (such as ulcerative colitis, myasthenia gravis, and rheumatoid arthritis). Treating another non-autoimmune inflammation (such as long-term allergic asthma control) is the third course of action.[1]

#### The immune system

Your body's chemicals and cells cooperate to fend off infections. People respond to germs in two somewhat distinct ways. No matter how frequently the infectious agent is seen, natural reactions still occur. However, this is not the case with learned (adaptive) responses. The more times they are exposed to the same virus, the better they get. B and T lymphocytes specific for an antigen begin to proliferate as soon as their surface receptors come into contact with the antigen. Particularly specialised cells called antigen-presenting cells present the antigen to lymphocytes and assist them in combating it. Immunoglobulins, which are antigen-specific antibodies that eradicate extracellular bacteria and maintain our health, are produced by B cells in the body. T cells assist B cells in the production of antibodies. They grow more hazardous when two virus-infected cells are eliminated and macrophages are activated. Innate and learnt responses typically cooperate to eliminate infections, although this isn't always the case [2].

#### **LEVEL OF DEFENCE**

Mucus and enzymes that are either antibacterial or hinder the microbe's ability to attach must be overcome by the pathogen before an infection can begin. The keratinized skin surface and the mucus-lined internal cavities are unsuitable environments for most organisms to survive in, thus bacteria must pass through them in order to reach the ectoderm. When an organism gets past this

Volume 23, Issue 2, November 2023

first line of defence, it encounters the innate and acquired immune responses, which are two additional layers of defence [3].

### THE INNATE RESPONSE

### Neutrophil Recruitment

The innate response is responsible for activating and delivering neutrophils to the infection site. How can infections be eliminated? Activated macrophages are critical because they release cytokines that aid in the early phases of a disease's resistance to the virus. These are the motivating factors for granulocyte and granulocyte macrophage colonies, and that's why. The bone marrow produces myeloid precursors, which cause leukocytosis, or an excess of white blood cells, by releasing many cells into the bloodstream. To reach a state where they can combat an infection, they go through a number of stages. These include, among other things, chemokines, sticky molecules, chemo attractants, and pro-inflammatory mediators. As a result of the majority of the work being done with neutrophils, it is now clear that all leucocytes, including lymphocytes, locate themselves using this method. We term this process "localization." Their function is to consume bacteria by enclosing them in membrane-bound vesicles, called pseudopodia. The phagolysosome, which is created when a virus enters your body, is the result of all of this assembly [4].

### Complement

Innate immunity is significantly influenced by the complement system. At least 20 serum glycoproteins are present, some of which are significant. These are switched on in a "cascade" fashion, with the power of each one increasing. Most often, a foreign material triggers your body's complement system to activate through antigen-antibody interactions. Your body may also begin to function in this manner as a result of polysaccharides from bacteria. Recent discoveries of mangan-binding lectins activate the classical sequence by improving its functionality [5].

## Eosinophils

Eosinophils are critical for the body's defence against parasite infections because they trigger the creation of antigen-specific IgE, which coats the parasite, in the body.

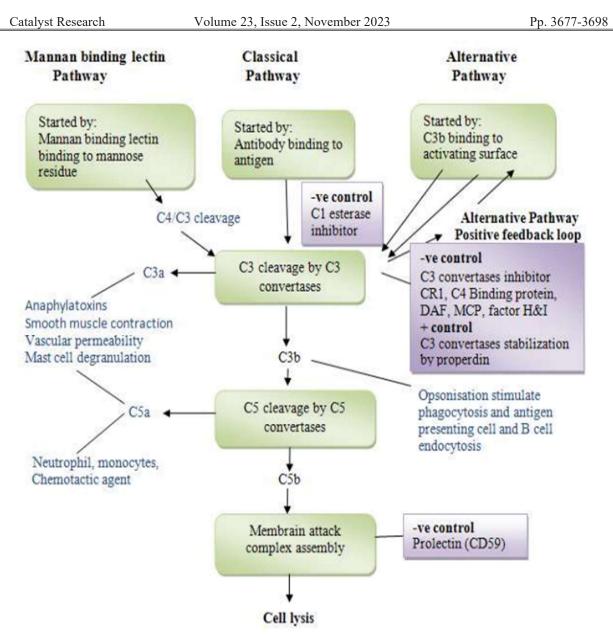



Figure 1: The three pathways of complement activation

#### **Mast Cells Basophils**

A mucosal mast cell, or T mast cell, is the sole kind of mast cell. It has trypsin in it. Check out this video to learn more about mast cells in your connective tissue. A receptor known as IgEFcRI (CD23) is present on basophils and mast cells. This receptor immediately consumes up any IgE that is in the region. This happens when an antigen is bound to IgE, which causes these receptors to degranulate and release already-made mediators, such as histamine and serotonin, which can cause a heart attack, as well as other things. In addition, membrane-based mediators, such as leukotrienes B4 and leukotrienes C4 and leukotrienes D4 and leukotrienes E4 are made. An inflammatory reaction may result from tightening of the bronchi and increased blood vessel permeability [6].

Volume 23, Issue 2, November 2023

## Natural Killer Cells

Naturally occurring killer cells possess receptors for more than only viruses. Two methods exist for them to determine whether there are malignant cells: The FcR (immunoglobulin receptor): Their FcR can connect to targets coated with antibodies, causing antibody-dependent cell lysis. This is the first reason they have it. Some further points: Additionally, the first MHC class 1 receptor is present on their exterior. The binding of this receptor is necessary for the natural killer cell to execute a cell. A cell cannot survive if this receptor is not bound. A cell's surface is coated with perforins, which are natural killer cells that adhere to it. Perforin-producing cells have punctured the cell membrane with their own perforins. Granzymes are inserted into holes through pores. The granzymes cause the cell they are in to die [7]. Perforin-producing cells have punctured the cell membrane with their own perforins. Granzymes are inserted into holes through pores. The granzymes cause the cell they are in to die [8]

| S. | Name of   | Family    | Parts | Chemical              | Mechanism     | Pharmacological   | R  |
|----|-----------|-----------|-------|-----------------------|---------------|-------------------|----|
| N. | Plants    |           | Used  | Constituents          | Of Action     | Uses              | ef |
|    |           |           |       |                       |               |                   | •  |
| 1  | Acorus    | Acoracea  | Rhiz  | $\alpha$ , β Asarone, | Active        | Memory related    | 9- |
|    | calamus   | e         | omes  | Cis and trans         | constituents  | disorders, Anti-  | 1  |
|    | (Commo    |           |       | isoeugenol            | degrade       | oxidant,          | 4  |
|    | n name:   |           |       |                       | Acetyl        | Insecticidal      |    |
|    | sweet     |           |       |                       | cholinesteras | activity, Relives |    |
|    | flag)     |           |       |                       | e in the      | stomach ache and  |    |
|    |           |           |       |                       | synapses      | dysentery         |    |
| 2  | Bacopa    | Plantagin | Leaf  | Brahmine,             | The           | Antioxidant,      | 1  |
|    | monnier   | aceae     | extra | herpestine,           | involvement   | Antilipoxygenase  | 5- |
|    | а         |           | cts   | nicotine,             | of the micro- |                   | 1  |
|    | (Commo    |           |       | Alkaloids like        | RNA 124-      |                   | 7  |
|    | n name:   |           |       | B-sterols,            | CREB          |                   |    |
|    | Thyme-    |           |       | betulic acid,         | pathway and   |                   |    |
|    | leafed    |           |       | Васора                | serotonergic  |                   |    |
|    | gratiola, |           |       | saponins              | receptor in   |                   |    |
|    | water     |           |       | (bacopasides          | the memory    |                   |    |
|    | hyssop,   |           |       | A, B, C, I, II,       | enhancing     |                   |    |
|    | Brahmi,   |           |       | X, and N2),           | mechanism     |                   |    |
|    | Indian    |           |       | and <i>Bacopa</i>     | of            |                   |    |
|    | pennywo   |           |       | saponin E             | standardized  |                   |    |
|    | rt        |           |       | (III, IV, V,          | extract has   |                   |    |
|    |           |           |       | and N1) were          | also been     |                   |    |
|    |           |           |       | scrutinized           | reported.     |                   |    |

Table1: Immunomodulator plants found in India

| Cata | lyst Research | 1         | Volume 2 | 23, Issue 2, Novemb   | er 2023             | Pp. 3677-3         | 6 |
|------|---------------|-----------|----------|-----------------------|---------------------|--------------------|---|
|      |               |           |          | from the leaf         |                     |                    |   |
|      |               |           |          | extract of <i>B</i> . |                     |                    |   |
|      |               |           |          | monnieri              |                     |                    |   |
| 3    | Celastru      | Celastrac | Bark     | Sesquiterpen          | Administrati        | Neuroprotective,   |   |
|      | S             | eae       | and      | oid                   | on of               | anti-infertility,  |   |
|      | panicula      |           | seeds    | polyalcohols,         | Convolvulus         | antiarthritic,     |   |
|      | tus           |           |          | Esters                | pluricaulis         | wound healing,     |   |
|      | (Commo        |           |          | (malkangunio          | increased           | anti-inflammatory, |   |
|      | n name:       |           |          | 1,                    | acetylcholin        | antioxidant,       |   |
|      | jyotisma      |           |          | malkangunin,          | esterase            | analgesic,         |   |
|      | ti, Jyoti     |           |          | Polyalcohol           | activity in         | antimalarial,      |   |
|      | Teja)         |           |          | A–D and               | hippocampal         | antibacterial and  |   |
|      |               |           |          | celapnin);            | CA1 and             | fungicidal, action |   |
|      |               |           |          | Alkaloids             | CA3 regions         | hypolipidemic,[26] |   |
|      |               |           |          | (paniculatine         | associated          |                    |   |
|      |               |           |          | and                   | with the            |                    |   |
|      |               |           |          | celastrine);          | memory              |                    |   |
|      |               |           |          | phenolic              | function and        |                    |   |
|      |               |           |          | Triterpenoids         | learning            |                    |   |
|      |               |           |          | (celastrol and        | abilities.          |                    |   |
|      |               |           |          | paniculatadio         |                     |                    |   |
|      |               |           |          | 1); fatty acids       |                     |                    |   |
|      |               |           |          | (oleic,               |                     |                    |   |
|      |               |           |          | linoleic,             |                     |                    |   |
|      |               |           |          | linolenic,            |                     |                    |   |
|      |               |           |          | palmitic,             |                     |                    |   |
|      |               |           |          | stearic and           |                     |                    |   |
|      |               |           |          | lignoceric            |                     |                    |   |
|      |               |           |          | acid) and             |                     |                    |   |
|      |               |           |          | agarofuran            |                     |                    |   |
|      |               |           |          | derivatives.          |                     |                    |   |
| 4    | Centella      | Apiceae   | Leaf     | Asiaticosides,        | Reduces             | Anti-              | I |
|      | asiatica      |           | extra    | Asiatic acid,         | apoptosis           | inflammatory,      |   |
|      | (Commo        |           | ct       | madecassosid          | and                 | antioxidative      |   |
|      | n name:       |           |          | e and                 | hippocampal         | stress,            |   |
|      | Gotu          |           |          | madasiatic            | A $\beta$ levels in | antiapoptotic      |   |
|      | kola,         |           |          | acid                  | vitro and in        | effects,           |   |
|      | Kodavan       |           |          | brahmoside            | vivo.               | neuroprotective    |   |
|      | , India       |           |          | and                   | Enhances            | effects, wound     |   |
|      | Pennyw        |           |          | brahminoside          | learning and        | healing,           | I |

|   | Cata | lyst Research |          | Volume | 23, Issue 2, Novemb | er 2023       | Pp. 3677-36        | 598 |
|---|------|---------------|----------|--------|---------------------|---------------|--------------------|-----|
| Γ |      | ort,          |          |        | ,                   | memory        | antipsoriatic,     |     |
|   |      | Asiatic       |          |        | isothankunisi       | function in   | antiulcer,         |     |
|   |      | Pennyw        |          |        | de,                 | mice models   | hepatoprotective,  |     |
|   |      | ort),         |          |        | thankuniside        | of AD.        | antidepressant     |     |
|   |      | (In India     |          |        | and                 | Potential use | activity,          |     |
|   |      | Manduk        |          |        | centelloside        | in the        | anticonvulsant,    |     |
|   |      | parni, Jal    |          |        |                     | prevention    | sedative,          |     |
|   |      | Brahmi)       |          |        |                     | and           | immunostimulant,   |     |
|   |      |               |          |        |                     | treatment of  | cardioprotective,  |     |
|   |      |               |          |        |                     | beta-amyloid  | antidiabetic,      |     |
|   |      |               |          |        |                     | toxicity and  | cytotoxic          |     |
|   |      |               |          |        |                     | AD            |                    |     |
|   |      |               |          |        |                     |               |                    |     |
|   | 5    | Clitoria      | Fabaceae | Root   | Taraxerol,          | C. ternatea   | nootropic,         | 2   |
|   |      | ternate       |          | s leaf | Teraxerone,         | behaved as    | anticonvulsant,    | 3-  |
|   |      | (commo        |          | extra  | ternatins,          | brain tonic   | antidepressant,    | 2   |
|   |      | n name:       |          | ct     | delphinidin-3,      | owing to      | antianxiety,       | 4   |
|   |      | Aparajit      |          | and    | delphinidin-        | their         | antistress,        |     |
|   |      | (Hindi),      |          | aerial | 3ß-glucoside,       | potential in  | antioxidant, anti- |     |
|   |      | Aparajit      |          | parts  | malvidin-3ß-        | increasing    | inflammatory,      |     |
|   |      | а             |          | of c.  | glucoside, 3        | levels of     | antihyperlipidemic |     |
|   |      | (Bengali      |          | ternat | monoglucosi         | acetylcholin  | , antidiabetic,    |     |
|   |      | ) and         |          | ea     | de, 3-              | e in the      | antiasthmatic,     |     |
|   |      | Kakkatta      |          |        | rutinoside, 3-      | brain.        | analgesic,         |     |
|   |      | n in          |          |        | neohisperidos       |               | immunomodulator    |     |
|   |      | Indian        |          |        | ide, 3-0-           |               | y, cytotoxicity,   |     |
|   |      | tradition     |          |        | rhamnosyl           |               | platelet           |     |
|   |      | al            |          |        | Glycoside,          |               | aggregation        |     |
|   |      | medicine      |          |        | kaempferol-         |               | inhibitory,        |     |
|   |      | )             |          |        | 3-0-                |               | antimicrobial,     |     |
|   |      |               |          |        | rhamnosyl,          |               | gastroprotective   |     |
|   |      |               |          |        | aparajitin,         |               | and                |     |
|   |      |               |          |        | beta-               |               | hepatoprotective   |     |
|   |      |               |          |        | sitosterol,         |               |                    |     |
|   |      |               |          |        | malvidin-3ß-        |               |                    |     |
|   |      |               |          |        | glucoside,          |               |                    |     |
|   |      |               |          |        | kaemphferol,        |               |                    |     |
|   |      |               |          |        | p-coumaric          |               |                    |     |
|   |      |               |          |        | acid, etc., are     |               |                    |     |

| Cata | alyst Research |          |        | 23, Issue 2, Novemb | ler 2025       | Pp. 3677-3           |   |
|------|----------------|----------|--------|---------------------|----------------|----------------------|---|
|      |                |          |        | isolated from       |                |                      |   |
|      | ~ .            |          |        | C. ternatea         | -              |                      | _ |
| 6    | Convolv        | Convulvu | Leaf   | Shankhpushp         | Its            | Nootropic,           |   |
|      | ulus           | laceae   | extra  | ine,                | administratio  | antistress,          |   |
|      | pluricau       |          | ct     | Convolamine,        | n for 3        | anxyiolytic,         |   |
|      | lis            |          |        | phytosterol,        | months at      | anticonvulsant       |   |
|      | (Commo         |          |        | amino acids,        | the dose of    | sedative activities, |   |
|      | n name:        |          |        | fatty acids,        | 150 mg/kg      | antiulcer,           |   |
|      | Shankhp        |          |        | scopoletin,         | prevented      | antibacterial,       |   |
|      | ushpi)         |          |        | beta-               | aluminum       | immunomodulator      |   |
|      |                |          |        | sitosterol,         | chloride       | y, cardiovascular    |   |
|      |                |          |        | Volatile oils,      | induced        | activity,            |   |
|      |                |          |        | favanoid-           | neurotoxicit   | antidepressant,      |   |
|      |                |          |        | kampferol.          | y by           | antiamnesic,         |   |
|      |                |          |        |                     | decreasing     | anticatatonic.       |   |
|      |                |          |        |                     | AChE           |                      |   |
|      |                |          |        |                     | activity,      |                      |   |
|      |                |          |        |                     | reducing       |                      |   |
|      |                |          |        |                     | oxidative      |                      |   |
|      |                |          |        |                     | stress and     |                      |   |
|      |                |          |        |                     | preserving     |                      |   |
|      |                |          |        |                     | the activity   |                      |   |
|      |                |          |        |                     | of ChAT and    |                      |   |
|      |                |          |        |                     | Nerve          |                      |   |
|      |                |          |        |                     | Growth         |                      |   |
|      |                |          |        |                     | Factor-        |                      |   |
|      |                |          |        |                     | Tyrosine       |                      |   |
|      |                |          |        |                     | kinase A       |                      |   |
|      |                |          |        |                     | receptor       |                      |   |
|      |                |          |        |                     | (NGF-TrkA)     |                      |   |
|      |                |          |        |                     | [242].         |                      |   |
| 7    | Coriand        | Apiaceae | Leaf   | Petroselinic        | Ethanolic      | Antioxidant,         | t |
|      | rum            |          | extra  | acid, linalool,     | extract        | Antidepressant,      |   |
|      | sativum        |          | ct,    | fatty acids         | (volatile oil) | and Anxiolytic       |   |
|      | <i>L</i> .     |          | volati |                     | were           | proprieties          |   |
|      | (Commo         |          | le oil |                     | assessed in    |                      |   |
|      | n name-        |          |        |                     | the β-         |                      |   |
|      | Cilantro,      |          |        |                     | amyloid rat    |                      |   |
|      | Chinese        |          |        |                     | model of       |                      |   |
|      | parsley)       |          |        |                     | Alzheimer's    |                      | I |

| Cata | lyst Research   |           | Volume | 23, Issue 2, Novemb     | er 2023       | Pp. 3677-3       | 69 |
|------|-----------------|-----------|--------|-------------------------|---------------|------------------|----|
| Jun  | 1,50 1005001011 |           |        | 2, 100 ac 2, 110 tellio | disease. The  | ip.5077.5        |    |
|      |                 |           |        |                         | anxiolytic    |                  |    |
|      |                 |           |        |                         | and           |                  |    |
|      |                 |           |        |                         | antidepressa  |                  |    |
|      |                 |           |        |                         | nt effects    |                  |    |
|      |                 |           |        |                         | were          |                  |    |
|      |                 |           |        |                         | evaluated in  |                  |    |
|      |                 |           |        |                         | vivo, and the |                  |    |
|      |                 |           |        |                         | antioxidant   |                  |    |
|      |                 |           |        |                         | property was  |                  |    |
|      |                 |           |        |                         | estimated by  |                  |    |
|      |                 |           |        |                         | the total     |                  |    |
|      |                 |           |        |                         | content of    |                  |    |
|      |                 |           |        |                         | the reduced   |                  |    |
|      |                 |           |        |                         | glutathione   |                  |    |
|      |                 |           |        |                         | in the        |                  |    |
|      |                 |           |        |                         | hippocampu    |                  |    |
|      |                 |           |        |                         | s. The        |                  |    |
|      |                 |           |        |                         | experiment    |                  |    |
|      |                 |           |        |                         | revealed that |                  |    |
|      |                 |           |        |                         | the           |                  |    |
|      |                 |           |        |                         | anxiolytic    |                  |    |
|      |                 |           |        |                         | and           |                  |    |
|      |                 |           |        |                         | antidepressa  |                  |    |
|      |                 |           |        |                         | nt-like       |                  |    |
|      |                 |           |        |                         | effects       |                  |    |
|      |                 |           |        |                         | decreased     |                  |    |
|      |                 |           |        |                         | catalase      |                  |    |
|      |                 |           |        |                         | activity and  |                  |    |
|      |                 |           |        |                         | increased     |                  |    |
|      |                 |           |        |                         | glutathione   |                  |    |
|      |                 |           |        |                         | levels in the |                  |    |
|      |                 |           |        |                         | hippocampu    |                  |    |
|      |                 |           |        |                         | s of the rat  |                  |    |
|      |                 |           |        |                         | brain.        |                  |    |
| 8    | Curcum          | Zingibera | Rhiz   | Curcumins               | It was found  | Neuroprotective, | ╈  |
|      | a longa         | ceae      | omes   | (Diferuloylm            | that oral     | Anti-            |    |
|      | L.              |           | extra  | ethane),                | administratio | Inflammatory,    |    |
|      | (Commo          |           | cts    | Flavonoids              | n of          | •                |    |
|      | n name:         |           |        | Phenols                 | curcumin      |                  |    |

| Cata | alyst Research | 1         | Volume 2 | 23, Issue 2, Novemb | 1             | Pp. 3677-30           | 59 |
|------|----------------|-----------|----------|---------------------|---------------|-----------------------|----|
|      | Turmeri        |           |          | Dimethoxy           | inhibits Aβ   | Protein               |    |
|      | c)             |           |          | curcumin,           | fibril        | Hyperphosphorylat     |    |
|      |                |           |          | bisdemethoxy        | deposition    | ion Inhibitor,        |    |
|      |                |           |          | curcumin,           | and           | In cough, hepatic     |    |
|      |                |           |          | glycosides          | hyperphosph   | disorders,            |    |
|      |                |           |          | and                 | orylation of  | Diabetes.             |    |
|      |                |           |          | terpenoids          | tau proteins  |                       |    |
|      |                |           |          |                     | that is an    |                       |    |
|      |                |           |          |                     | important     |                       |    |
|      |                |           |          |                     | pathway.      |                       |    |
| 9    | Desmodi        | Fabaceae  | Powd     | Alkaloids           | Elicits       | Antileishmanial,      |    |
|      | um             |           | ered     | (tryptamines        | AChE          | immunomodulator       |    |
|      | gangetic       |           | root,    | and                 | inhibitory    | y, antioxidant,       |    |
|      | um             |           | leaf     | phenylethyla        | activity.     | anti-inflammatory,    |    |
|      | (Commo         |           | paste    | mines),             | Improves      | antinociceptive,      |    |
|      | n              |           |          | phospholipids       | learning and  | cardioprotective,     |    |
|      | name:Sa        |           |          | , sterols,          | memory in     | antiulcer,            |    |
|      | lpani)         |           |          | flavone,            | scopolamine   | antiamnesic and       |    |
|      | - /            |           |          | Pterocarpanoi       | and ageing    | hepatoprotective      |    |
|      |                |           |          | ds (gangetin,       | models.       |                       |    |
|      |                |           |          | desmodin),          |               |                       |    |
|      |                |           |          | and                 |               |                       |    |
|      |                |           |          | glycosides.         |               |                       |    |
| 1    | Eclipta        | Asteracea | Flow     | Coumestans,         | Butanol       | It has good           | I  |
| 0    | alba (L.)      | e         | er       | flavonoids,         | fraction      | antimicrobial         |    |
|      | (Commo         |           | extra    | alkaloids,          | increased     | properties like       |    |
|      | n Name:        |           | ct       | volatile oil,       | ACh           | antibacterial,        |    |
|      | Bringhar       |           |          | sterols,            | content,      | antifungal and        |    |
|      | aj,            |           |          | triterpenoid        | decreased     | antimalarial. It also |    |
|      | Hassk)         |           |          | saponins.           | MAO-B         | shows antidiabetic,   |    |
|      |                |           |          | _                   | activity and  | hepatic disorders,    |    |
|      |                |           |          |                     | reduced       | hypolipidemic,        |    |
|      |                |           |          |                     | oxidative     | anticancer,           |    |
|      |                |           |          |                     | stress in the | atherosclerosis, hair | l  |
|      |                |           |          |                     | rat brain.    | growth promoting      |    |
|      |                |           |          |                     | Lipid         | and memory            |    |
|      |                |           |          |                     | lowering and  | enhancement and       |    |
|      |                |           |          |                     | antioxidant   | immunomodulatory      |    |
|      |                |           |          |                     | activities of | properties            |    |
|      |                |           |          | 1                   | Eclipta       | 1 1                   | 1  |

| <b>China Petroleum Pr</b> | rocessing and Petroc | hemical Technology |
|---------------------------|----------------------|--------------------|
|---------------------------|----------------------|--------------------|

\_

| Cata | lyst Research                         |          | Volume 2 | 23, Issue 2, Novemb |               | Pp. 3677-30       | 698 |
|------|---------------------------------------|----------|----------|---------------------|---------------|-------------------|-----|
|      |                                       |          |          |                     | plants have   |                   |     |
|      |                                       |          |          |                     | also been     |                   |     |
|      |                                       |          |          |                     | reported      |                   |     |
| 1    | Evolvul                               | Convolvu | Leaf     | Octadecanoic        | The           | Antioxidant       | 3   |
| 1    | us                                    | laceae   | exact    | acid, n-            | methanol      | immunomodulator   | 7-  |
|      | alsinoid                              |          |          | hexadecenoic        | and water     | y,adaptogenic,    | 4   |
|      | es                                    |          |          | acid,               | extract       | antiamnesic and   | 3   |
|      | (Commo                                |          |          | squalene,           | exhibit       | antiulcer         |     |
|      | n name-                               |          |          | cholesterol,        | acetylcholin  |                   |     |
|      | Dwarf                                 |          |          | Piperine,           | esterase      |                   |     |
|      | morning                               |          |          | Ethyl oleate        | activity,     |                   |     |
|      | glory,                                |          |          |                     | supporting    |                   |     |
|      | Shankhp                               |          |          |                     | its potential |                   |     |
|      | ushpi)                                |          |          |                     | in reverting  |                   |     |
|      |                                       |          |          |                     | neuronal      |                   |     |
|      |                                       |          |          |                     | dysfunctions  |                   |     |
|      |                                       |          |          |                     | •             |                   |     |
| 1    | Ginkgo                                | Ginkgoac | Leaf     | Terpenes,           | These         | Antioxidant, AChE | 4   |
| 2    | biloba L.                             | eae      | extra    | bilobalide,         | compounds     | inhibitor         | 4   |
|      | (Commo                                |          | cts      | ginkgolide          | possess       |                   |     |
|      | n name:                               |          |          |                     | remarkable    |                   |     |
|      | Maidenh                               |          |          |                     | anti-AChE     |                   |     |
|      | air tree)                             |          |          |                     | and           |                   |     |
|      | , , , , , , , , , , , , , , , , , , , |          |          |                     | antioxidant   |                   |     |
|      |                                       |          |          |                     | properties.   |                   |     |
|      |                                       |          |          |                     | Further       |                   |     |
|      |                                       |          |          |                     | clinical      |                   |     |
|      |                                       |          |          |                     | assessment    |                   |     |
|      |                                       |          |          |                     | was           |                   |     |
|      |                                       |          |          |                     | suggested     |                   |     |
|      |                                       |          |          |                     | for the       |                   |     |
|      |                                       |          |          |                     | methanolic    |                   |     |
|      |                                       |          |          |                     | extract of G. |                   |     |
|      |                                       |          |          |                     | biloba upon   |                   |     |
|      |                                       |          |          |                     | revealing in  |                   |     |
|      |                                       |          |          |                     | vitro anti-   |                   |     |
|      |                                       |          |          |                     | AChE and      |                   |     |
|      |                                       |          |          |                     | antioxidant   |                   |     |
|      |                                       |          |          |                     | properties    |                   |     |
|      |                                       |          |          |                     |               |                   | 1   |

| Cata | alyst Research | 1        | Volume | 23, Issue 2, Novemb | per 2023              | Pp. 3677-36         | <u>698</u> |
|------|----------------|----------|--------|---------------------|-----------------------|---------------------|------------|
| 1    | Lavandu        | Lamiacea | Arial  | Linalool,           | Lavender              | Antioxidant,        | 4          |
| 3    | la             | e        | part   | tannins,            | extract               | neurotransmitter,   | 5          |
|      | angustif       |          | extra  | linalyl             | treatment             | antianxiety,        | 4          |
|      | olia           |          | ct     | acetate,            | reversed              | hypnotic,           | 7          |
|      | Mill           |          |        | camphor,            | levels of 10          | anticonvulsant      |            |
|      |                |          |        | coumarins,          | metabolite            |                     |            |
|      |                |          |        | triterpenes,        | markers               |                     |            |
|      |                |          |        | flavonoids.         | nearly to             |                     |            |
|      |                |          |        |                     | control               |                     |            |
|      |                |          |        |                     | including             |                     |            |
|      |                |          |        |                     | carnitine,            |                     |            |
|      |                |          |        |                     | pantothenate          |                     |            |
|      |                |          |        |                     | , isobutyrate,        |                     |            |
|      |                |          |        |                     | glutamine,            |                     |            |
|      |                |          |        |                     | alanine,              |                     |            |
|      |                |          |        |                     | isoleucine,           |                     |            |
|      |                |          |        |                     | serine,               |                     |            |
|      |                |          |        |                     | valine,               |                     |            |
|      |                |          |        |                     | glucose, and          |                     |            |
|      |                |          |        |                     | asparagine            |                     |            |
|      |                |          |        |                     | involved in           |                     |            |
|      |                |          |        |                     | AD                    |                     |            |
|      |                |          |        |                     | pathogenesis          |                     |            |
| 1    | Moringa        | Moringac | Leaf   | Vitamins            | Pre-                  | nootropic, anti-    |            |
| 4    | oleifera       | eae      | extra  | (Vitamin A          | treatment             | inflammatory,       | 2          |
|      | (M.            |          | ct     | and C),             | with M.               | hypocholesterolem   | 8          |
|      | oleifera)      |          |        | polyphenols         | <i>oleifera</i> at an | ic, hypotensive and | 4          |
|      | (Commo         |          |        | flavonoids,         | oral dose of          | antioxidant,        | 4          |
|      | n name:        |          |        | chlorogenic         | 250 mg/kg             | hypolipidemic,      |            |
|      | Drum           |          |        | acid and            | prevented             | antiobesity,        |            |
|      | stick)         |          |        | phenolic            | hypoxia               | antidiabetic, anti- |            |
|      |                |          |        | acids),             | induced               | inflammatory,       |            |
|      |                |          |        | alkaloids,          | memory                | immunomodulator     |            |
|      |                |          |        | glucosinolate       | impairment            | y and anticancer    |            |
|      |                |          |        | s,                  | in rats by            | effects.            |            |
|      |                |          |        | isothiocyanat       | maintaining           |                     |            |
|      |                |          |        | es, tannins         | the                   |                     |            |
| 1    |                |          |        | and saponins        | monoamines            |                     |            |

| Cata | alyst Research |           | Volume | 23, Issue 2, Novemb | er 2023       | Pp. 3677-36          | 598 |
|------|----------------|-----------|--------|---------------------|---------------|----------------------|-----|
|      |                |           |        |                     | levels in the |                      |     |
|      |                |           |        |                     | brain         |                      |     |
| 1    | Morind         | Rubeacea  | Each   | Alkaloids,          | It also       | Anti-oxidant,        | 5   |
| 5    | a              | e         | part   | Lignans,            | inhibits the  | Repairs broken       | 6-  |
|      | citrifolia     |           | of the | Oligo and           | metabolism    | joints,              | 6   |
|      | (Commo         |           | tree   | polysaccharid       | of Acetyl     | Appetite stimulant,  | 1   |
|      | n name:        |           | has    | es,                 | choline by    | Treats burns,        |     |
|      | Cheese         |           | medi   | flavanoids,         | interfering   | swelling, boils.     |     |
|      | fruit,         |           | cinal  | additional it's     | with the      |                      |     |
|      | Indian         |           | value  | a plant with        | action of     |                      |     |
|      | mulberry       |           |        | high nutrition      | Acetylcholin  |                      |     |
|      | , Noni)        |           |        | value it            | e esterase    |                      |     |
|      |                |           |        | contains            |               |                      |     |
|      |                |           |        | carbohydrates       |               |                      |     |
|      |                |           |        | , dietary           |               |                      |     |
|      |                |           |        | fibers,             |               |                      |     |
|      |                |           |        | vitamin A,          |               |                      |     |
|      |                |           |        | B3, C, Iron,        |               |                      |     |
|      |                |           |        | potassium.          |               |                      |     |
| 1    | Matricar       | Asteracea | flowe  | Terpinoids          | Phytoconstit  | Mild laxative Anti-  | 6   |
| 6    | ia             | e         | r      | like α-             | uents of this | mutagenic Anti-      | 2-  |
|      | chamom         |           |        | Bisbolol, α-        | plant         | spasmodic            | 6   |
|      | illa:          |           |        | Bisbolol            | extracts are  | Anxiolytic Anti-     | 9   |
|      | (Commo         |           |        | oxide A and         | responsible   | inflammatory         |     |
|      | n name:        |           |        | B,                  | for           | Treats sore          |     |
|      | Chamom         |           |        | Sesqueterpen        | Neuroprotect  | stomach              |     |
|      | ile)           |           |        | es, Luteolin,       | ive and Anti- |                      |     |
|      | ,              |           |        | Coumarins,          | oxidant       |                      |     |
|      |                |           |        | Umbelliferon        | activity.     |                      |     |
|      |                |           |        | e and               | 5             |                      |     |
|      |                |           |        | polysaccharid       |               |                      |     |
|      |                |           |        | es                  |               |                      |     |
| 1    | Salvia         | Lamiacea  | Flow   | Carnosic acid       | Protects      | These compounds      | 7   |
| 7    | officinal      | e         | er     | and                 | PC12 cells    | are thought to       | 0-  |
|      | is             |           |        | Rosmarinic          | from          | protect the brain    | 7   |
|      | Commo          |           |        | acid, 1,8           | neurotoxicit  | from oxidative       | 1   |
|      | n name:        |           |        | cineole,            | y and tau     | damage Anti-         | 1   |
|      | Garden         |           |        | camphor, α          | protein       | fungal activity,     |     |
|      |                |           |        | and β-              | -             | Anti-viral activity, | 1   |
|      | sage           |           |        | and p-              | hyperphosph   | Anti-vital activity, |     |

\_\_\_\_

| China Petroleum Processing and P | Petrochemical Technology |
|----------------------------------|--------------------------|
|----------------------------------|--------------------------|

|   | alyst Research |          |        | 23, Issue 2, Novemb |                      | Pp. 3677-30          |  |
|---|----------------|----------|--------|---------------------|----------------------|----------------------|--|
|   |                |          |        | vridiflorol, α-     |                      | activity, Memory     |  |
|   |                |          |        | pinene              |                      | improvement          |  |
|   |                |          |        |                     |                      | infertility,         |  |
|   |                |          |        |                     |                      | diuretics, and local |  |
|   |                |          |        |                     |                      | anesthetic for skin, |  |
|   |                |          |        |                     |                      | styptic, anti-       |  |
|   |                |          |        |                     |                      | oxidant.             |  |
| 1 | Tinospo        | Menisper | Root'  | Steroids,           | Tinospora            | Treats hay fever     |  |
| 8 | ra             | maceae   | s part | Alkaloids,          | <i>Cordifolia</i> 's | and related          |  |
|   | cordifoli      |          |        | Polysaccharid       | mechanism            | symptoms             |  |
|   | а              |          |        | es, and             | for cognitive        | Anti-viral,          |  |
|   | (Commo         |          |        | Glycosides.         | enhancement          | Anticancer,          |  |
|   | n name:        |          |        |                     | is by                | Anti-hypertensive,   |  |
|   | Giloy,         |          |        |                     | immunostim           | Vasorelaxant.        |  |
|   | Guduchi        |          |        |                     | ulation and          |                      |  |
|   | ,              |          |        |                     | synthesis of         |                      |  |
|   | Heart          |          |        |                     | acetylcholin         |                      |  |
|   | leaved         |          |        |                     | e, this              |                      |  |
|   | moonsee        |          |        |                     | supplementa          |                      |  |
|   | d)             |          |        |                     | tion of              |                      |  |
|   |                |          |        |                     | choline              |                      |  |
|   |                |          |        |                     | enhances the         |                      |  |
|   |                |          |        |                     | cognitive            |                      |  |
|   |                |          |        |                     | function.            |                      |  |
| 1 | Withani        | Solanace | Root   | Sitoindosides,      | Its extract          | Antioxidant,         |  |
| 9 | a              | ae       | extra  | withaferin          | containing           | leukotriene          |  |
|   | somnifer       |          | ct     |                     | sitoindosides        | signaling inhibitor, |  |
|   | a (L.)         |          |        |                     | VII–X and            | apoptogenic anti-    |  |
|   | Dunal          |          |        |                     | withaferin A         | inflammatory,        |  |
|   | (Commo         |          |        |                     | (50 mg/kg,           | antioxidant,         |  |
|   | n name:        |          |        |                     | p.o for two          | neuroprotective,     |  |
|   | Medhyar        |          |        |                     | weeks)               | antischemic, anti-   |  |
|   | asayan         |          |        |                     | reversed             | Parkinson's,         |  |
|   | (Nootrop       |          |        |                     | ibotenic             | antiepileptic,       |  |
|   | ic herb),      |          |        |                     | acid-induced         | anxiolytic,          |  |
|   | Ashwag         |          |        |                     | cognitive            | antidepression,      |  |
|   | andha,         |          |        |                     | deficit and          | antiarthritic,       |  |
|   | Winter         |          |        |                     | reduction in         | cardioprotective,    |  |
|   | cherry,        |          |        |                     | cholinergic          | antidiabetic,        |  |
|   |                |          |        |                     | markers              | anticancer,          |  |

| China Petroleum Processing and | <b>Petrochemical Technology</b> |
|--------------------------------|---------------------------------|
|--------------------------------|---------------------------------|

| Cata | lyst Research |           | Volume 2 | 23, Issue 2, Novemb | er 2023        | Рр. 3677-36          | 598 |
|------|---------------|-----------|----------|---------------------|----------------|----------------------|-----|
|      | Indian        |           |          |                     | (e.g., ACh     | antistress,          |     |
|      | Ginseng)      |           |          |                     | and ChAT)      | nephroprotective,    |     |
|      |               |           |          |                     | in rats [156]. | heptoprotective,     |     |
|      |               |           |          |                     | Sitoindoside   | antihypoxic,         |     |
|      |               |           |          |                     | s VII-X and    | immunomodulatory,    |     |
|      |               |           |          |                     | withaferin     | hypolipidaemic and   |     |
|      |               |           |          |                     | differentially | antimicrobial [152]. |     |
|      |               |           |          |                     | (40 mg/kg      |                      |     |
|      |               |           |          |                     | for 7 days)    |                      |     |
|      |               |           |          |                     | but            |                      |     |
|      |               |           |          |                     | favorably      |                      |     |
|      |               |           |          |                     | altered the    |                      |     |
|      |               |           |          |                     | AChE           |                      |     |
|      |               |           |          |                     | activity and   |                      |     |
|      |               |           |          |                     | enhanced       |                      |     |
|      |               |           |          |                     | M1- and        |                      |     |
|      |               |           |          |                     | M2-            |                      |     |
|      |               |           |          |                     | muscarinic     |                      |     |
|      |               |           |          |                     | receptor-      |                      |     |
|      |               |           |          |                     | binding in     |                      |     |
|      |               |           |          |                     | various brain  |                      |     |
|      |               |           |          |                     | regions.       |                      |     |
| 2    | Zingiber      | Zingibera | Rhiz     | s, flavonoids,      | Exerts Aβ      | Neuroprotective,     | 8   |
| 0    | officinalis   | ceae      | ome      | phenols             | aggregating,   | antiinflammatory,    | 1-  |
|      | Rosc.         |           | extra    |                     | antioxidant    | protein              | 8   |
|      | (Zingeber     |           | ctss     |                     | and AChE       | hyperphosphorylati   | 2   |
|      | aceae)        |           |          |                     | inhibitory     | on inhibitor         |     |
|      | common        |           |          |                     | activity.      |                      |     |
|      | name:         |           |          |                     |                |                      |     |
|      | Sonth         |           |          |                     |                |                      |     |

## CONCLUSION

The primary sources of innovation in the creation of therapeutic agents are natural goods and traditional medicinal remedies. Over time, a number of substances with immunomodulatory properties derived from plants have been found. Medicinal herbs can be used to induce immunomodulation as an alternative to chemotherapy for a variety of conditions. The possibility exists to mitigate the negative effects and high expense of synthetic molecules by the identification and isolation of more targeted immunomodulatory medicines derived from plants. The importance of medicinal plants as producers of immunomodulatory molecules with a wide range of chemistries and potential applications in the treatment of humans and animals is highlighted in

Volume 23, Issue 2, November 2023

Pp. 3677-3698

this review. It is necessary to resolve the obstacles that arise while applying plant-derived immunomodulators. However, there are times when the transition from traditional remedies to modern pharmaceutical techniques is difficult. Plant secondary metabolite profiles often have a considerable dependence on environmental cues, which can interfere with the reproducibility of extract-based results and explain the inconsistent reactions of phytomedical practices. If the enriched fractions and extracts standardization guidelines are strictly followed, this can be reduced.

Adequate microbiological contamination control techniques were not used in the majority of investigations done to ascertain the impact on the immune system. According to research, the immune system's parameters can be altered by microbial endotoxins.

To combat the microbiological contamination, the proper safety measures must be implemented. Another aim is to classify immunomodulatory drugs generated from plants into a particular class or classes according to intrinsic risk. The cumulative knowledge of meta-analyses of clinical trials, national registries, and clinicians can be used to attempt this risk-level classification of novel plant-derived immunomodulatory drugs. Inadequate quantities required for development and clinical usage are a major limitation with natural products. Researchers must thus focus more on the creation of innovative separation strategies to increase the number for medicinal applications. These drugs' limited bioavailability is a significant therapeutic constraint. To increase their effectiveness when given to people, nanotechnology and other delivery methods are being used. In order to ensure the purity and efficacy of medicinal compounds obtained from plants for potential pharmaceutical uses, there is a lack of standard checking and quality control processes. It can be difficult to achieve consistent quality in every batch of some plant-derived substances because of their excessive molecular weight and structural diversity, such as polysaccharides. Improvements would be driven by the growing demand for these plant-derived products in order to overcome these barriers to market entry.

## REFERENCE

- 1. Lebisha, I.J. and Moraski, N.D., 1987. Mechanisms of immunomodulation by drugs. *Toxicol Pathol*, Vol.15, Issue 3, pp. 338-345.
- Dorshkind, K. and Horseman, N.D., 2000. The Roles of Prolactin, Growth Hormone, Insulin-Like Growth Factor-I, and Thyroid Hormones in Lymphocyte Development and Function: Insights from Genetic Models of Hormones and Hormone Receptor Deficiency. *Endocrine Review*, Vol. 21, Issue 3, pp. 292-312.
- 3. Lebisha, I.J. and Moraski, N.D., 1987. Mechanisms of immunomodulation by drugs. *Toxicol Pathol*, Vol.15, Issue 3, pp. 338-345.
- 4. Delves, P.J. and Roitt, I.M., 2000. The immune system. Part 1. *England Journal of Medical*, Vol. 343, Issue 2, pp. 3-49.
- 5. Von Andrian, U.H. and Mackay, C.R., 2000. T-cell function and migration—two sides of the same coin. *National England Journal of Medical*, Vol. 343, Issue 6 pp. 1020-34.

Volume 23, Issue 2, November 2023

Catalyst Research

- 6. MacKay, I. and Rosen, F., 2000. Innate immunity. *New England Journal Medical*, Vol. 343, Issue 2, pp. 338-44.
- 7. Parkin, J. and Bryony, C., 2001. *An overview of the immune system*. The Lancet, Vol. 357, Issue 4pp. 1777-1789.
- 8. Aplin, A.E., Howe, A.K. and Juliano, R.L., 1999. Cell adhesion molecules, signal transduction and cell growth. *Curr Opin Cell Biology*, Vol. 11, Issue 2 pp. 737-144.
- 9. 10.Rajagopal PL, Ashlyjames, K. Premaletha P.N.Sajith kumar, Journal of International Academic research for Multidisciplinary. 2013; (9):1-14.
- Balakumbahan R, Rajamani K and Kumanan K, Acorus calamus: An overview, Journal of Medicinal Plants Research, 2010; 4(25):2740-2745, December Special Review.
- Valay S, Ragavendra M., Sushma M., and V. Uma Maheswara Rao, Evaluation of Nootropic activity of Acorous calamus against scopolamine induced Alzheimer's, World Journal of Pharmacy and Pharmaceutical Sciences, 2015; 4(11):1743-1758.
- 12. Vijayapandi et al., In vitro Anticholinergic and Antihistaminic activities of Acorus calamus linn. Leaves extracts, Afr J Tradit Complement Altern Med. 2013; 10(1):95-101.
- 13. Yende SR, Harle UN, Dajgure DT, Tuse TA and Vyawahare NS, Pharmacological profile of Acorus calamus: An Overview, Pharmacognosy Reviews [Phcog Rev.], 2008; 2(4):22-26.
- 14. Imam H, Riaz Z, Azhar M, Sofi G, Hussain A. Sweet flag (Acorus calamus Linn.): An incredible medicinal herb. Int J Green Pharm 2013; 7:288-96
- 15. Aguiar, S.; Borowski, T. Neuropharmacological Review of the Nootropic Herb Bacopa monnieri. Rejuvenation Res. 2013, 16, 313–326. [CrossRef]
- Preethi, J.; Singh, H.K.; Charles, P.D.; Rajan, K.E. Participation of microRNA 124-CREB pathway: A parallel memory enhancing mechanism of standardised extract of Bacopa monniera (BESEB CDRI-08). Neurochem. Res. 2012, 37, 2167–2177. [CrossRef]
- Rajan, K.E.; Singh, H.K.; Parkavi, A.; Charles, P.D. Attenuation of 1-(m-Chlorophenyl)-Biguanide Induced Hippocampus-Dependent Memory Impairment by a Standardised Extract of Bacopa monniera (BESEB CDRI-08). Neurochem. Res. 2011, 36, 2136–2144. [CrossRef]
- Bihaqi SW, Singh AP, Tiwari M. In vivo investigation of the neuroprotective property of Convolvulus pluricaulis in scopolamine induced cognitive impairments in Wistar rats. Indian J Pharmacol. 2011;43(5):520–525.
- Dubey GP, Pathak SR, Gupta BS. Combined effect of Brahmi (Bacopa monniera) and Shankhpushpi (Convolvulus pluricaulis) on cognitive functions. Pharmacopsychoecol. 1994; 7:249–251
- 20. Malik, J.; Karan, M.; Dogra, R. Ameliorating effect of Celastrus paniculatus standardized extract and its fractions on 3-nitropropionic acid induced neuronal damage in rats: Possible antioxidant mechanism. Pharm. Biol. 2017, 55, 980–990. [CrossRef]
- 21. Gohil, K.J.; Patel, J.A.; Gajjar, A.K. Pharmacological review on Centella asiatica: A potetial herbal cure-all. Indian J. Pharm. Sci. 2010, 72, 546–556. [CrossRef]
- 22. Dhanasekaran, M.; Holcomb, L.A.; Hitt, A.R.; Tharakan, B.; Porter, J.W.; Young, K.A.; Manyam, B.V. Centella asiatica extract selectively decreases amyloid beta levels in

hippocampus of Alzheimer's disease animal model. Phytother. Res. 2009, 23, 14–19. [CrossRef] [PubMed]

- Mukherjee, P.K.; Kumar, V.; Kumar, N.S.; Heinrich, M. The Ayurvedic medicine Clitoria ternatea—From traditional use to scientific assessment. J. Ethnopharmacol. 2008, 120, 291– 301. [CrossRef] [PubMed]
- Adams, M.; Gmünder, F.; Hamburger, M. Plants traditionally used in age related brain disorders—A survey of ethnobotanical literature. J. Ethnopharmacol. 2007, 113, 363–381. [CrossRef]
- Adams, M.; Gmünder, F.; Hamburger, M. Plants traditionally used in age related brain disorders—A survey of ethnobotanical literature. J. Ethnopharmacol. 2007, 113, 363–381. [CrossRef]
- 26. Sethiya, N.K. An update on Shankhpushpi, a cognition-boosting Ayurvedic medicine. J. Chin. Integr. Med. 2009, 7, 1001–1022. [CrossRef]
- 27. Bihaqi, S.W.; Sharma, M.; Singh, A.P.; Tiwari, M. Neuroprotective role of Convolvulus pluricaulis on aluminium induced neurotoxicity in rat brain. J. Ethnopharmacol. 2009, 124, 409–415. [CrossRef]
- O. Cioanca, L. Hritcu, M. Mihasan, A. Trifan, and M. Hancianu, "Inhalation of coriander volatile oil increased anxiolytic–antidepressant-like behaviors and decreased oxidative status in beta-amyloid (1–42) rat model of Alzheimer's disease," Physiology & Behavior, vol. 131, pp. 68–74, 2014.
- S. Mandal and M. Mandal, "Coriander (Coriandrum sativum L.) essential oil: chemistry and biological activity," Asian Pacific Journal of Tropical Biomedicine, vol. 5, no. 6, pp. 421 – 428, 2015
- S. Bhattacharjee, N. Banerjee, S. Chatterjee et al., "Role of turmeric in management of different non-communicable diseases," World Journal of Pharmacy and Pharmaceutical Sciences, vol. 6, pp. 1767 –1778, 2017.
- Rastogi, S.; Pandey, M.M.; Rawat, A.K.S. An ethnomedicinal, phytochemical and pharmacological profile of Desmodium gangeticum (L.) DC. and Desmodium adscendens (Sw.) DC. J. Ethnopharmacol. 2011, 136, 283–296. [CrossRef]
- 32. Mishra, P.K.; Singh, N.; Ahmad, G.; Dube, A.; Maurya, R. Glycolipids and other constituents from Desmodium gangeticum with antileishmanial and immunomodulatory activities. Bioorganic Med. Chem. Lett. 2005, 15, 4543–4546. [CrossRef]
- Joshi, H.; Parle, M. Antiamnesic effects of Desmodium gangeticum in mice. Yakugaku Zasshi, 2006, 126(9), 795-804. [http://dx.doi.org/10.1248/yakushi.126.795] [PMID: 16946593]
- Puri, H.S. Rasayana: Ayurvedic Herbs for Longevity and Rejuvenation: Volume 2 of Traditional Herbal Medicines for Modern Times. J. Altern. Complement. Med. 2003, 9, 331– 332. [CrossRef]
- 35. Thakur, V.; Mengi, S. Neuropharmacological profile of Eclipta alba (Linn.) Hassk. J. Ethnopharmacol. 2005, 102, 23–31. [CrossRef]

Volume 23, Issue 2, November 2023

Catalyst Research

- 36. Rajani, G.P. Prasad KVSRG. Effect of Eclipta alba Linn on learning and memory in rats. Indian J. Pharm. Educ. Res. 2007, 41, 369–372
- 37. Kim, D.-I.; Lee, S.-H.; Choi, J.-H.; Lillehoj, H.S.; Yu, M.-H.; Lee, G.-S. The butanol fraction of Eclipta prostrata (Linn) effectively reduces serum lipid levels and improves antioxidant activities in CD rats. Nutr. Res. 2008, 28, 550–554. [CrossRef]
- Cervenka, F.; Koleckar, V.; Rehakova, Z.; Jahodar, L.; Kunes, J.; Opletal, L.; Hyspler, R.; Jun, D.; Kuca, K. Evaluation of natural substances from Evolvulus alsinoides L. with the purpose of determining their antioxidant potency. J. Enzym. Inhib. Med. Chem. 2008, 23, 574–578. [CrossRef]
- Gomathi, D.; Kalaiselvi, M.; Ravikumar, G.; Devaki, K.; Uma, C. GC-MS analysis of bioactive compounds from the whole plant ethanolic extract of Evolvulus alsinoides (L.) L. J. Food Sci. Technol. 2015, 52, 1212–1217. [CrossRef]
- Auddy, B.; Ferreira, M.; Blasina, F.; Lafon, L.; Arredondo, F.; Dajas, F.; Tripathi, P.; Seal, T.; Mukherjee, B. Screening of antioxidant activity of three Indian medicinal plants, traditionally used for the management of neurodegenerative diseases. J. Ethnopharmacol. 2003, 84, 131–138. [CrossRef]
- Ganju, L.; Karan, D.; Chanda, S.; Srivastava, K.; Sawhney, R.; Selvamurthy, W. Immunomodulatory effects of agents of plant origin. Biomed. Pharm. 2003, 57, 296–300. [CrossRef]
- Siripurapu, K.B.; Gupta, P.; Bhatia, G.; Maurya, R.; Nath, C.; Palit, G. Adaptogenic and antiamnesic properties of Evolvulus alsinoides in rodents. Pharmacol. Biochem. Behav. 2005, 81, 424–432. [CrossRef]
- Asolkar, L.V.; Kakkar, K.K.; Chakre, O.J. Second Supplement to Glossary of India Medicinal Plants with Active Constituents; Council for Scientific and Industrial Research; Publications & Information Directorate: New Delhi, India, 1992; p. 1965.
- 44. Patel, S.S.; Raghuwanshi, R.; Masood, M.; Acharya, A.; Jain, S.K. Medicinal plants with acetylcholinesterase inhibitory activity. Rev. Neurosci. 2018, 29, 491–529. [CrossRef] [PubMed]
- 45. P. K. Mukherjee, V. Kumar, M. Mal, and P. J. Houghton, "Acetylcholinesterase inhibitors from plants," Phytomedicine, vol. 14, no. 4, pp. 289–300, 2007.
- 46. A. A. Oskouie, R. F. Yekta, M. R. Tavirani, M. S. Kashani, and F. Goshadrou, "Lavandula angustifolia effects on rat models of Alzheimer's disease through the investigation of serum metabolic features using NMR metabolomics," Avicenna Journal of Medical Biotechnology, vol. 10, no. 2, pp. 83–92, 2018.
- 47. M. Soheili, M. R. Tavirani, and M. Salami, "Lavandula angustifolia extract improves deteriorated synaptic plasticity in an animal model of Alzheimer's disease," Iranian Journal of Basic Medical Sciences, vol. 18, no. 11, pp. 1147–1152, 2015.
- 48. M. Rychlik, "Quanti fication of free coumarin and its liberation from glucosylated precursors by stable isotope dilution assays based on liquid chromatography –tandem mass spectrometric detection," Journal of Agricultural and Food Chemistry, vol. 56, no. 3, pp. 796–801, 2008.

- 49. Dhongade, H.K.J.; Paikra, B.K.; Gidwani, B. Phytochemistry and Pharmacology of Moringa oleifera Lam. J. Pharm. 2017, 20, 194–200. [CrossRef] [PubMed]
- 50. Caceres, A.; Saravia, A.; Rizzo, S.; Zabala, L.; De Leon, E.; Nave, F. Pharmacologic properties of Moringa oleifera. 2: Screening for antispasmodic, antiinflammatory and diuretic activity. J. Ethnopharmacol. 1992, 36, 233–237. [CrossRef]
- 51. Faizi, S.; Siddiqui, B.S.; Saleem, R.; Siddiqui, S.; Aftab, K.; Gilani, A.-U.-H. Fully acetylated carbamate and hypotensive thiocarbamate glycosides from Moringa oleifera. Phytochemistry 1995, 38, 957–963. [CrossRef]
- Ghasi, S.; Nwobodo, E.; Ofili, J. Hypocholesterolemic effects of crude extract of leaf of Moringa oleifera Lam in high-fat diet fed wistar rats. J. Ethnopharmacol. 2000, 69, 21–25. [CrossRef]
- 53. Mohan, M.; Kaul, N.; Punekar, A.; Girnar, R.; Junnare, P.; Patil, L. Nootropic activity of Moringa oleifera leaves. J. Nat. Remed. 2005, 5, 59–62.
- 54. Verma, A.R.; Vijayakumar, M.; Mathela, C.S.; Rao, C.V. In vitro and in vivo antioxidant properties of different fractions of Moringa oleifera leaves. Food Chem. Toxicol. 2009, 47, 2196–2201. [CrossRef]
- 55. Ganguly, R.; Guha, D. Protective role of an Indian herb, Moringa oleifera in memory impairment by high altitude hypoxic exposure, Possible role of monoamines. Biog. Amines. 2006, 20, 121–133.
- Ganguly, R.; Guha, D. Alteration of brain monoamines & EEG wave pattern in rat model of Alzheimer's disease & protection by Moringa oleifera. Indian J. Med Res. 2008, 128, 744– 751. [PubMed]
- 57. Praveen K and Yellamma K: Insilco Identification of Suitable Acetuylcholinesterase Inhibitors from Morinda Citrifolia Linn. With Reference To Alzheimer's disease. Int J Pharm Sci Res 2014; 5(12):5474-81.
- 58. Devaprasad M, Kumaran santhalingam, Subramaniyan kannaiyan, Sanmathi suresh3, Benedict paul, Virtual screening of Phytochemicals of Morinda citrifolia as Anti-- inflammatory and Anti- alzheimer agents using molegro virtual docker on p38α mitogen-activated protein kinase enzyme, Asian J Pharm Clin Res, 2015; 8(6):141-145.
- 59. Jian Yang\*, Rama Gadi, and Talene Thomson, Antioxidant capacity, total phenols, and ascorbic acid content of noni (Morinda citrifolia) fruits and leaves at various stages of maturity, Micronesica. 2011; 41(2):167–176.
- 60. Jeyabalan S, Subramanian K, Cheekala UMR, Krishnan C. In vitro & ex vivo Acetylcholinesterase Inhibitory Activity of Morinda citrifolia Linn (Noni) Fruit Extract. Pharmacog J. 2017; 9(6):900-5.
- 61. Steve frailey, Why Noni is So Special- Memory Loss, 2018, 1-8
- 62. Rajagopal PL, Ashlyjames, K.Premaletha P.N.Sajith kumar, Journal of International Academic research for Multidisciplinary. 2013; (9):1-14.
- 63. Chamomile: Medicinal, Biochemical, and Agricultural Aspects, Introduction to Chamomile, s

- 64. Singh O, Kahnam Z, Misra N, Manoj, Srivatsava K, Chamomile (Matricaria chamomilla L.): An overview, Pharmacogn Rev. 2011; 5(9):82–95.
- 65. Assessment report on Matricaria recutita L., flos and Matricaria recutita L., aetheroleum, European Medicines Agency, 2014, 2-62.
- 66. Asgharzade S, Radiei Z, Mahmoud, Rafieian Kopaei, Effect of Matricaria Chamomilla extract on motor coordination impairement induced by Scopalamine by Rats, Asian Pac J Trop Biomed 2015; 5(10):829–833.
- 67. Ranpariya VL, Parmar SK, Sheth NR, Chandrashekhar VM, Neuroprotective activity of Matricaria recutita against fluorideinduced stress in rats, Pharm Biol. 2011; 49(7):696-701
- 68. Gupta V, Mittal P, Bansal P, Khokra SL, Kaushik D, Pharmacological Potential of Matricaria recutita-A Review, International Journal of Pharmaceutical Sciences and Drug Research 2010; 2(1):12-16.
- 69. Sayyar Z, Yazdinezhad A, Hassan M, and Iraj Jafari Anarkooli, Protective Effect of Matricaria chamomilla Ethanolic Extract on Hippocampal Neuron Damage in Rats Exposed to Formaldehyde, Volume 2018, Article ID 6414317, 1-10.
- 70. Sepide Miraj and Sara Kiani, A review study of therapeutic effects of Salvia officinalis L, Scholars Research Library, 2016; 8(6):299-303.
- Akhondzadeh, S.; Noroozian, M.; Mohammadi, M.; Ohadinia, S.; Jamshidi, A.H.; Khani, M. Salvia officinalis extract in the treatment of patients with mild to moderate Alzheimer's disease: a double blind, randomized and placebo-controlled trial. J. Clin. Pharm. Ther., 2003, 28(1), 53-59. [http://dx.doi.org/10.1046/j.1365-2710.2003.00463.x] [PMID: 12605619]
- 72. Lannert H, Hoyer S. Intracerebroventricular administration of streptozotocin causes long-term diminutions in learning and memory abilities and in cerebral energy metabolism in adult rats. Behav Neurosci 1998; 112:1199-208.
- 73. Bone, K. Clinical Applications of Ayurvedic and Chinese Herbs. Monographs for the Western Herbal Practitioner; Phytotherapy Press: Queensland, Australia, 1996; pp. 137–141.
- Chatterjee, A.; Pakrashi, S.C. The Treatise on Indian Medicinal Plants. Council for Scientific and Industrial Research; Publications & Information Directorate: New Delhi, India, 1995; Volume 4, pp. 208–212.
- 75. Dar, N.J.; Hamid, A.; Ahmad, M. Pharmacologic overview of Withania somnifera, the Indian Ginseng. Cell. Mol. Life Sci. 2015, 72, 4445–4460. [CrossRef] [PubMed]
- Mirjalili, M.H.; Moyano, E.; Bonfill, M.; Cusido, R.M.; Palazón, J. Steroidal Lactones from Withania somnifera, an Ancient Plant for Novel Medicine. Molecules 2009, 14, 2373–2393. [CrossRef] [PubMed]
- 77. Mishra, L.C.; Singh, B.B.; Dagenais, S. Scientific basis for the therapeutic use of Withania somnifera (ashwagandha): A review. Altern. Med. Rev. 2000, 5, 334–346.
- 78. Kumar, V.; Dey, A.; Hadimani, M.B.; Marcovi'c, T.; Emerald, M. Chemistry and pharmacology of Withania somnifera: An update. Tang (Humanit. Med.) 2015, 5, e1. [CrossRef]

Catalyst Research Volume 23, Issue 2, November 2023

- 79. Bhattacharya, S.K.; Kumar, A.; Ghosal, S. Effects of glycowithanolides from Withania somnifera on an animal model of Alzheimer's disease and perturbed central cholinergic markers of cognition in rats. Phytother. Res. 1995, 9, 110–113. [CrossRef].
- Schliebs, R.; Liebmann, A.; Bhattacharya, S.K.; Kumar, A.; Ghosal, S.; Bigl, V. Systemic administration of defined extracts from Withania somnifera (Indian ginseng) and Shilajit differentially affects cholinergic but not glutamatergic and GABAergic markers in rat brain. Neurochem. Int. 1997, 30, 181–190. [CrossRef]
- Ali, S.K.; Hamed, A.R.; Soltan, M.M.; Hegazy, U.M.; Elgorashi, E.E.; El-Garf, I.A.; Hussein, A.A. In-vitro evaluation of selected Egyptian traditional herbal medicines for treatment of Alzheimer disease. BMC Complement. Altern. Med., 2013, 13, 121. [http://dx.doi.org/10.1186/1472-6882-13-121] [PMID: 23721591]
- Shishodia, S.; Sethi, G.; Aggarwal, B.B. Curcumin: Getting back to the roots. Ann.N.Y. Acad. Sci., 2005, 1056, 206-217. [http://dx.doi.org/10.1196/annals.1352.010] [PMID: 16387689].