Catalyst Research

Volume 23, Issue 2, November 2023

CFD ANALYSIS ON HEAT EXCHANGER IN PARALLEL AND COUNTER FLOW DIRECTION BY APPLYING VARIOUS MODELS USING ANSYS SOFTWARE

U. Vineetha¹, K. Simhadri^{2*}

¹Department of Mechanical Engineering, GMR Institute of Technology, Rajam, Andhra Pradesh, India. ²Department of Mechanical Engineering, GMR Institute of Technology, Rajam, Andhra Pradesh, India.

Email: simhadri.k@gmrit.edu.in, simhadrikambala@gmail.com

ABSTRACT

CFD examination can be utilized to concentrate on the presentation of intensity exchangers with various plans and materials in both equal and counter stream headings. An intensity exchanger is a gadget that is utilized to move heat starting with one liquid then onto the next liquid, without permitting them to blend in with one another. Heat exchangers are utilized in a wide range of uses. Heat exchangers can be arranged into three fundamental sorts: equal stream, counter stream, and cross stream. In an equal stream heat exchanger, the two liquids stream in a similar bearing, lined up with one another. In a counter stream heat exchanger, the two liquids stream in inverse headings, or counter to one another. Furthermore, in cross stream the two streams cross opposite to one another. In this paper I have planned the intensity exchangers tubes in round loop and round snaked shapes with round and hexagonal round and hollow shells to examine the strain and temperature decreases by utilizing the significant and proficient programming Ansys workbench, so we involved various materials for barrel shaped shells Tantalum-carbide and Hafnium-carbide for inside curls and liquid is utilized as water-fluid for both boiling water and cool water for equal stream and counter stream.as the coil is 300mm and the shell is 400mm in both symmetric view so we consider the pressure, velocity and temperature in all the analysis to verify which of them reaches the highest values. So, varieties of heat exchanger and CFD examination is completed in ANSYS 14.0.

Keyword: -Shell and tube heat exchanger, Ansys, Temperature, Pressure and Velocity Heat transfer coefficient, thermal analysis, Parallel and Counter Flow.

1. Introduction

An intensity exchanger is a gadget that moves nuclear power between at least two liquids or gases, which are normally at various temperatures. Computational Liquid Elements (CFD) examination is a strategy that utilizes mathematical techniques and calculations to reproduce and investigate liquid stream, heat move, and other related peculiarities. CFD examination can be utilized to display heat exchangers and dissect their exhibition. By making a three-layered model of the intensity exchanger and reproducing the progression of liquids through it, CFD can be utilized to foresee key boundaries, for example, heat move coefficients, pressure decrease, and liquid temperature dispersion. The CFD examination of intensity exchangers regularly includes a few

Catalyst Research

Volume 23, Issue 2, November 2023

Pp. 3401-3426

stages, including math creation, coinciding, limit conditions, and arrangement combination. The math creation includes making a computerized model of the intensity exchanger utilizing programming like ANSYS. This data can be utilized to advance the plan of the intensity exchanger and work on its presentation. By and large, CFD investigation is an integral asset for breaking down heat exchangers, giving definite experiences into liquid stream, heat move, and other significant execution boundaries. The reference paper I have studied in that they have discussed about their analysis in that they select Copper material to the tubes and steel material to shell design then studied in Ansys and optimized the best possible value of temperature variations amongst the discussed materials [7] [28]. so that it may be assumed that no heat transfer is taking place in between shell and surroundings. As per results it is concluded that zigzag pattern tube design gives better heat transfer in heat exchanger as comparison to others. After comparing these results, they found the maximum heat transfer at zigzag pattern of heat exchanger. So zigzag pattern design is optimum design for maximum heat transfer. So, as they have the better values at zigzag pattern [7] [28], so I have decided to make a coil form so that it has more space to convert the liquid in one form to another form within less period. Due to that reason, I have designed this various pattern and the main sole purpose of the heat exchanger is to analyze if there any variations in pressure velocity and temperature and getting that which of the design may get the maximum highest values of than others by using the Ansys workbench Cfd software could be the best software for analysis.

2. Table of dimensions of Heat Exchanger using Ansys

To execute the limited component examination of the intensity exchanger models while heat exchanger tubes course of action upgrades the temperature and the intensity move to the water with the assistance of cylinders, an underlying assessment performed with the utilization of ANSYS Workbench At this step the exploration of the intensity exchanger models is a consistent state, while minor alteration in heat exchanger models material utilized Tantalum-carbide and Hafnium-carbide. The model of the intensity exchanger models is planned in ANSYS Workbench.[7] [28]

Dimensions of	Dimensions of	Dimensions of	Dimensions of		Types of
cylindrical	hexagonal	cylindrical	Hexagonal	Materials Detail	dosigns
Tubes	Tubes	Shell Body	Shell Body		designs
Hot domain Diameter = 40 mm	Hot domain Diameter = 40 mm	Outer Diameter = 200 mm	Outer Diameter = 180mm	Coil Tubes Material = Hafnium- carbide (Hfc)	Circular coil with cylindrical shell of
Hot Fluid inlet	Hot Fluid inlet	Inlet cool water dia =80mm	Inlet dia=40mm	Shell Material =	parallel flow
diameter = 30 mm	diameter = 30 mm	Outlet cool water dia =80mm	Outlet dia =40mm	Tantalum- carbide (Tac)	flow

China Petroleum Processing and Petrochemical Technology

Catalyst Research	Vol	ume 23, Issue 2, No	wember 2023]	Pp. 3401-3426		
Height of hot water inlet = 150mm	Height of hot water inlet = 150mm	Height of cool water inlet and outlet = 150mm	Height of cool water inlet and outlet dia =150mm		Hexagonal coil with		
Length of circle cylindrical coil = 600mm	Length of hexagonal coil = 600mm	Length of cylindrical shell = 800mm	Length of hexagonal shell =800mm	No. of turns for circular coils = 5 No. of turns in hexagonal coil = 5	shell of parallel flow and counter flow		
	T	ypes of flows: k-	epsilon standard				
	in	let cold fluid ten	perature: -100°c	2			
	In	let hot fluid tem	perature: - 300°c	;			
	Fluid used in both shell & coil: -water-liquid						
Mass flow rate: - 0.05kg/sec at both parallel and counter inlets							
Pressure outlet: -10000pa							
		Units: - m	illimeter				

Table 1 Dimensions of Designs

3. Methodology

According to concentrate on it is found that CFD assessment incorporates for the most part three sorts of advances are depicted:

Pre-Handling: This is the early phase of the CFD recreation process, which serves to appropriately make sense of the calculation. The chose stream space is partitioned into various more modest parts. CFD-GEOM, ANSYS, Lattice, ANSYS, ICEM CFD, T Network and so on are recognized pre-handling programming. Pre-planning incorporates the issue, the formation of a 3D showcase, the Ansys workbench, coinciding and actual working circumstances called limits.

Tackling or Handling: Assuming liquid qualities, stream actual science have been contemplated, and then the circumstances for taking care of them with laptops are restricted. Remarkable business Programming for this design is accessible: CFD++, open Froth, ANSYS CFX, Star CCM, and ANSYS Familiar and so on. Utilizing this thing, the administration necessities for stream science can be perceived. Taking care of includes loosening up mathematical or consistent liquid stream states until the time while taking part is a specialist. This normally expects that the PC perceives a tremendous number of determinations and can require a few hours or a few days.

Post handling: The last step following the outcomes from the solver is to examine the outcomes utilizing different method, for example, weight and speed shape tracks, vector track, smoothest out, temperature type, and so forth after a model is gotten a handle on. Post arranging is either in 2-D or three dimensional straight forward portrayals.[7] [28]

4. Process of Designing patterns and analysis

Catalyst ResearchVolume 23, Issue 2, November 2023Pp. 3401-3426We get the YZ plane and sketch a Hexagonal at the breadth of 30mm at 100mm separation from
Y Pivot and 300mm separation from Z Axis. At the same way the 5 additional Hexagonal were
made with same breadth and distance and each Hexagonal ought to be attracted each unique
sketch's nevertheless the distance between each Hexagonal has 120mm towards Z Axis so the 5
Hexagonal arrive at the level of 600mm subsequent to finishing the Hexagonal again taking 5 more
portrays for lines for provide the way guidance for winding turn as we select range choice and
giving the material as frozen and further more giving the contort as 1 so it can make single bend
as we need to find the outcomes at specific focuses so this single giving bends can make a stage to
come by the outcomes displayed as shown in below [7] [28]

Fig 1: -Circular Coil with Cylindrical shell

Fig 2: - Hexagonal Coil with Hexagonal Coil

Pp. 3401-3426

Catalyst Research Volume 23, Issue 2, November 2023 As Meshing finished then we have allocated the name choice as choosing the specific stage and giving them their specific names so they can be effortlessly characterized in additional cycle as named selections play a critical role you can declare your named selections on geometry and use them in subsequent boundary condition definitions. It is a very helpful tool for defining boundary conditions as shown in below figures as along with their given names as they done. here is meshing design for both Hexagonal Coil with Cylindrical shell and Hexagonal Coil with Cylindrical shell

in counter flow and parallel flow.

Fig 1.1: -Meshing	Circular Coil with	Cylindrical	shell
Hexagonal shell.			

Fig 2.1: -Meshing Hexagonal Coil with

8			
Nodes	47356	Nodes	10456
Elements	230482	Elements	48914
Show Detailed Statistics	No	Show Detailed Statistics	No

Table :2 Meshing nodes and Edges

Table 3 Boundary conditions of Heat exchangers in analysis

As Meshing finished then we have allocated the name choice as choosing the specific stage and giving them their specific names so they can be effortlessly characterized in additional cycle as named selections play a critical role you can declare your named selections on geometry and use them in subsequent boundary condition definitions. It is a very helpful tool for defining boundary conditions as shown in below figures as along with their given names as they done.

Fig 1.2 Named selection parallel flow Circular Coil with Cylindrical shell

Fig 2.2 Named selection parallel flow. hexagonal coil with hexagonal shell

The forthcoming system is SETUP and SOLUTION here the cycle is the planned article is allocated with the various materials and in this I relegated the materials for shell body is Tantalum carbide (tac) and the coil is allotted with Hafnium carbide(hfc) and the flow is K-epsilon standard and the liquid Temperature [water-fluid and the inlet flow are given as mass flow rate 0.05 Kg/s and the outlet is given as pressure outlet at 10000pa and by initialization and Run calculation we can make iterations on the grounds that These qualities are absolutely abstract and will choose the union and the precision of the arrangement upto multiple times and after fulfillment of estimation then, at that point, select Reports opening in that sub choice as Surface integrals then, at that point, select Mass weighted flow and select the choices for figuring the outcomes as heated water channels and outlets and furthermore for cool water channels and outlets As it is the last cycle in the Ansys workbench that Computational Fluid Elements in this we select each channel, outlets, contact areas and interferer segments as pressure then select the plane choice and by giving YZ plane and choosing contacts as color in that pressure, Velocity and Temperature[7] [28]

6. Results and Discussion

1. Cylindrical shell with circular coil Counter flow

The forthcoming system is SETUP and SOLUTION here the cycle is the planned article is allocated with the various materials and in this I relegated the materials for shell body is Tantalum carbide (tac) and the coil is allotted with Hafnium carbide(hfc) and the flow is K-epsilon standard and the liquid material is the water-fluid and the inlet flow are given as mass flow rate 0.05 Kg/s and the outlet is given as pressure outlet at 10000pa and by initialization and Run calculation we can make iterations on the grounds that These qualities are absolutely abstract and will choose the union and the precision of the arrangement upto multiple times and after fulfillment of

Catalyst ResearchVolume 23, Issue 2, November 2023Pp. 3401-3426estimation then, at thatpoint, select Reports opening in that sub choice as Surface integrals then,
at thatpoint, select Mass weighted flow and select the choices for figuring the outcomes as heated
water channels and outlets andfurthermore for cool water channels and outlets. As it is the last
cycle in the Ansys workbench that Computational Fluid Elements in this we select each channel,
outlets, contact areas and Interface segments as pressure then select as shown in below figure of
1.1.1 and 1.1.4 are pressures and Temperature as shown in fig 1.1.2 and 1.1.5 and for the Velocity
as shown in fig 1.1.3 and 1.1.6 [7] [28]

Static hot	20	Static hot	°	Static hot	m/s
Pressure	pa	Temperature	C	Velocity	111/8
Hot Water	10034.067m	Hot Water	200°a	Hot Water	0.075740755m/a
Inlet 1	10034.907pa	Inlet 1	300 C	Inlet 1	0.075749755111/8
Hot Water	10032 117m	Hot Water	207 6082200	Hot Water	0.070158787m/s
Inlet 2	10032.117pa	Inlet 2	297.09852 C	Inlet 2	0.07913070711/8
Hot Water	10026006m	Hot Water	202 124020	Hot Water	0.070575752m/s
Inlet 3	10020.090pa	Inlet 3	292.13403 C	Inlet 3	0.0793737355111/8
Hot Water	$10020 \ 104m$	Hot Water	296 24510%	Hot Water	0 070164762 m/s
Inlet 4	10020.194pa	Inlet 4	200.34319 C	Inlet 4	0.079104703 111/8
Hot Water	10014 122mg	Hot Water	200 277570-	Hot Water	0.079551652 m/s
Inlet 5	10014.122pa	Inlet 5	280.37737 0	Inlet 5	
Hot Water	10008.411 mg	Hot Water	274 2200300	Hot Water	0.07021672/.
Inlet 6	10008.411pa	Inlet 6	274.22093 C	Inlet 6	0.07921072 11/8
Hot Water	10002.762m	Hot Water	267 55668%	Hot Water	0.078270024 m/s
Inlet 7	10002.702pa	Inlet 7	207.33008 C	Inlet 7	0.078279024 111/8
Hot Water	10000	Hot Water	265 66067%	Hot Water	0.076140216 m/s
outlet	10000 pa	outlet	203.00007 C	outlet	0.070149210 111/8
Net value	10017.333pa	Net value	282.99886°c	Net value	0.078355549m/s

Table 1.1.1 Hot water pressureTable 1.1.2 Hot water TemperatureTable 1.1.3 Hotwater VelocityTable 1.1.2 Hot water TemperatureTable 1.1.3 Hot

As it is the last cycle in the Ansys workbench that Computational Fluid Elements in this we select each channel, outlets, contact areas and interferer segments as pressure then select the plane choice and by giving YZ plane and choosing contacts as color in that per Temperature 1.1.2.1, velocity 1.1.3.1, or pressure 1.1.1.1

Catalyst Research

Volume 23, Issue 2, November 2023

Fig.1.1.1.1 Hot water pressure

Fig1.1.2.1 Hot water Temperature

Fig1.1.3.1 Hot water Velocity

The process of this below shown figures the and values is done same as the process that shown in above in 1.1 so that the process is continued in the same step by selecting the temperature by selecting Mass weighted area and select the choices for figuring the outcomes as heated water channels and outlets and furthermore for cool water channels and outlets as shown in below fig 1.1.4, 1.1.5 & 1.1.6[7] [28]

Static cool	Ра	Static cool	°c	Static cool	m/s
pressure		Temperature		Velocity	
Cool water	10000.406 Pa	Cool water	100°c	Cool water	0.018043169m/s
inlet		inlet		inlet	

Catalyst Research		rch V	Volume 23, Issue 2, November 2023			Pp. 3401-3426	
	Cool water	10000 Pa	Cool water	134.17302°c	Cool water	0.018918542 m/s	
	outlet		outlet		outlet		
	Net value	10000.203 Pa	Net value	117.08651°c	Net value	0.018480855 m/s	
Table 1.1.4 Cool water pressureTable 1.1.5 Cool water TemperatureTable 1.1.6 Cool							
	water Velocity						

As it is the last cycle in the Ansys workbench that Computational Fluid Elements in this we select each channel, outlets, contact areas and interferer segments as pressure then select the plane choice and by giving YZ plane and choosing contacts as color in that per Temperature 1.1.5.1, velocity 1.1.6.1, or pressure 1.1.4.1.

0.300 fm)

Ansys 2023 RJ

134.17305

Fig 1.1.6.1 Cool water Velocity

2. Cylindrical shell with Circular coiled Parallel flow

The forthcoming system is SETUP and SOLUTION here the cycle is the planned article is allocated with the various materials and in this I relegated the materials for shell body is Tantalum carbide (tac) and the coil is allotted with Hafnium carbide(hfc) and the flow is 6.2.4 and standard and the liquid material is the water-fluid and the inlet flow are given as mass flow rate 0.05 Kg/s

Catalyst ResearchVolume 23, Issue 2, November 2023Pp. 3401-3426and the outlet is given as pressure outlet at 10000pa and by initialization and Run calculation of500 iterations we can make iterations on the grounds that These qualities are absolutely abstractand will choose the union and the precision of the arrangement up to multiple times and afterfulfillment of estimation then, at that point, select Reports opening in that sub choice as Surfaceintegrals then, at that point, select Mass weighted area and select the choices for figuring theoutcomes as heated water channels and outlets and furthermore for cool water channels and outletsAs it is the last cycle in the Ansys workbench that Computational Fluid Elements in this we selecteach channel, outlets, contact areas and Interface segments as pressure then select as shown inbelow figure of 2.2.1 and 2.2.4 and figure of 2.2.2 and 2.2.5 and also for the Velocity as shown in

Static hot	pa	Static hot	°c	Static hot	m/s
Pressure		Temperature		Velocity	
Hot Water	10026.124	Hot Water	300°c	Hot	0.075749755m/s
Inlet 1	pa	Inlet 1		Water	
				Inlet 1	
Hot Water	10034.688	Hot Water	296.63052°c	Hot	0.079013214m/s
Inlet 2	pa	Inlet 2		Water	
				Inlet 2	
Hot Water	10031.979	Hot Water	289.26032°c	Hot	0.079397094 m/s
Inlet 3	pa	Inlet 3		Water	
				Inlet 3	
Hot Water	10020.418	Hot Water	282.91911°c	Hot	0.07916921 m/s
Inlet 4	pa	Inlet 4		Water	
				Inlet 4	
Hot Water	10014.496	Hot Water	277.16946°c	Hot	0.079489357m/s
Inlet 5	pa	Inlet 5		Water	
				Inlet 5	
Hot Water	10008.741	Hot Water	271.97504°c	Hot	0.079411493m/s
Inlet 6	pa	Inlet 6		Water	
				Inlet 6	
Hot Water	10002.899	Hot Water	267.23494°c	Hot	0.07814197 m/s
Inlet 7	pa	Inlet 7		Water	
				Inlet 7	
Hot Water	10000 pa	Hot Water	265.96177°c	Hot	0.076503138m/s
outlet		outlet		Water	
				outlet	
Net value	10017.42 pa	Net value	281.3954°c	Net value	0.078359647 m/s

Table 2.2.1 Hot water pressureTable 2.2.2 Hot water TemperatureTable 2.2.3 Hotwater Velocity

Catalyst ResearchVolume 23, Issue 2, November 2023Pp. 3401-3426As it is the last cycle in the Ansys workbench that Computational Fluid Elements in this we select
each channel, outlets, contact areas and interferer segments as pressure then select the plane choice
and by giving YZ plane and choosing contacts as color in that as per Temperature 2.2.2.1,
velocity2.2.3.1, or pressure 2.2.1.1.

Fig 2.2.1.1 Cool water pressure

The process of this below shown figures and values is done same as the process that shown in above in 6.2 so that the process is continued in the same step by selecting the temperature by selecting Mass weighted area and select the choices for figuring the outcomes as heated water channels and outlets and furthermore for cool water channels and outlets as shown in below fig 2.2.4, 2.2.5 & 2.2.6

Static	Pa	Static cool	°c	Static	m/s
cool		Temperature		cool	
pressure				Velocity	

Catalyst Research		Volume 23, Issue 2, November 2023			Pp. 3401-3426	
Cool	10000.405Pa	Cool water	100°c	Cool	0.018043169m/s	
water		inlet		water		
inlet				inlet		
Cool	10000 Pa	Cool water	133.80714°c	Cool	0.018905987m/s	
water		outlet		water		
outlet				outlet		
Net	10000.202Pa	Net value	116.90358°c	Net	0.018474578m/s	
value				value		

Table 2.3.4 Cool water pressureTable 2.3.5 Cool water TemperatureTable 2.3.6 Coolwater VelocityTable 2.3.5 Cool water TemperatureTable 2.3.6 Cool

As it is the last cycle in the Ansys workbench that Computational Fluid Elements in this we select each channel, outlets, contact areas and interferer segments as pressure then select the plane choice and by giving YZ plane and choosing contacts as color in that as per Temperature 2.3.5.1, velocity 2.3.6.1, or pressure 2.3.4.1.

Fig 2.3.4.1 Cool water pressure

Fig 2.3.6.1 Cool water Velocity

Volume 23, Issue 2, November 2023

3 Hexagonal shell with hexagonal coiled Parallel flow

The forthcoming system is SETUP and SOLUTION here the cycle is the planned article is allocated with the various materials and in this I relegated the materials for shell body is Tantalum carbide (tac) and the coil is allotted with Hafnium carbide(hfc) and the flow is K-epsilon standard and the liquid material is the water-fluid and the inlet flow are given as mass flow rate 0.05 Kg/s and the outlet is given as pressure outlet at 10000pa and by initialization and Run calculation of 500 iterations we can make iterations on the grounds that These qualities are absolutely abstract and will choose the union and the precision of the arrangement upto multiple times and after fulfillment of estimation

then, at that point, select Reports opening in that sub choice as Surface integrals then, at that point, select Mass weighted area and select the choices for figuring the outcomes as heated water channels and outlets and furthermore for cool water channels 4.2 and As it is the last cycle in the Ansys workbench that Computational Fluid Elements in this we select each channel, outlets, contact areas and Interface segments as pressure then select as shown in below figure of 3.1 and 3.4 and Temperature as shown in fig 3.2 and 3.5 and also for the Velocity as shown in fig 3.3 and 3.6

Static hot	na	Static hot	°c	Static hot	m/s
Drossuro	F	Tomporatura	l č	Valoaity	110.5
Flessure		Temperature		velocity	
Hot Water	10032.347	Hot Water	300	Hot Water	0.021421903
Inlet 1	Pa	Inlet 1		Inlet 1	
Hot Water	10032.159	Hot Water	297.37707	Hot Water	0.022461837
Inlet 2	Pa	Inlet 2		Inlet 2	
Hot Water	10025.802	Hot Water	291.43512	Hot Water	0.096327378
Inlet 3	Pa	Inlet 3		Inlet 3	
Hot Water	10017.101	Hot Water	286.99792	Hot Water	0.069210863
Inlet 4	Ра	Inlet 4		Inlet 4	
Hot Water	10009.057	Hot Water	283.45063	Hot Water	0.064903961
Inlet 5	Ра	Inlet 5		Inlet 5	
Hot Water	10001.012	Hot Water	279.13654	Hot Water	0.043088094
Inlet 6	Ра	Inlet 6		Inlet 6	
Hot Water	10000.269	Hot Water	273.39075	Hot Water	0.022672816
Inlet 7	Ра	Inlet 7		Inlet 7	
Hot Water	10000 Pa	Hot Water	271.71295	Hot Water	0.021427358
outlet		outlet		outlet	
Net value	10014.504	Net value	285.37058	Net value	0.047480487
	Pa				
blo 2 1 Hot w	Table 2 2 Hot wa				

Table 3.1 Hot water pressureTable 3.2 Hot water TemperatureTable 3.3 Hot waterVelocity

Catalyst Research Volume 23, Issue 2, November 2023 Pp. 3401-3426

As it is the last cycle in the Ansys workbench that Computational Fluid Elements in this we select each channel, outlets, contact areas and interferer segments as pressure then select the plane choice and by giving YZ plane and choosing contacts as color in that as per Temperature 3.2.1, velocity 3.3.1, or pressure 3.1.1.

Fig 3.1.1 Hot water pressure

Fig 3.2.1 Hot water Temperature

Fig 3.3.1 Hot water Velocity

The process of this below shown figures the and values is done same as the process that shown in above in 3.4 so that the process is continued in the same step by selecting the temperature by selecting Mass weighted area and select the choices for figuring the outcomes as heated water

Catalyst Research	Volume 23, Issue 2, November 2023	Pp. 3401-3426

channels and outlets and furthermore for cool water channels and outlets as shown in below fig 3.4.1,3.5.1 & 3.6.1

Static cool	Pa	Static cool	°c	Static cool	m/s
pressure		Temperature		Velocity	
Cool water	10000.146Pa	Cool water	100°c	Cool water	0.01204982m/s
inlet		inlet		inlet	
Cool water	10000 Pa	Cool water	134.04245°c	Cool water	0.012187456m/s
outlet		outlet		outlet	
Net value	10000.073Pa	Net value	117.02111°c	Net value	0.012118638m/s

Table 3.4.1 Cool water pressureTable 3.5.1 Cool water TemperatureTable 3.6.1 Coolwater Velocity

As it is the last cycle in the Ansys workbench that Computational Fluid Elements in this we select each channel, outlets, contact areas and interferer segments as pressure then select the plane choice and by giving YZ plane and choosing contacts as color in that as per Temperature.3.4.1, velocity 3.5.1, or pressure 3.4.1

Fig 3.4.1.1 Cool water pressure

Fig3.5.1.1 Cool water Temperature

Fig 3.6.1.1 Cool water Velocity

Catalyst Research

Volume 23, Issue 2, November 2023

4 Hexagonal shell with hexagonal coiled Counter flow

The forthcoming system is SETUP and SOLUTION here the cycle is the planned article is allocated with the various materials and in this I relegated the materials for shell body is Tantalum carbide (tac) and the coil is allotted with Hafnium carbide(hfc) and the flow is K-epsilon standard and the liquid material is the water-fluid and the inlet flow are given as mass flow rate 0.05 Kg/s and the outlet is given as pressure outlet at 10000pa and by initialization and Run calculation of 500 iterations we can make iterations on the grounds that These qualities are absolutely abstract and will choose the union and the precision of the arrangement upto multiple times and after fulfillment of estimation then, at that point, select Reports opening in that sub choice as Surface integrals then, at that point, select Mass weighted area and select the choices for figuring the outcomes as heated water channels and outlets and furthermore for cool water channels 4.2 and As it is the last cycle in the Ansys workbench that Computational Fluid Elements in this we select each channel, outlets, contact areas and Interface segments as pressure then select as shown in below figure of 4.1 and 4.4 and Temperature as shown in fig 4.2 and 4.5 and also for the Velocity as shown in fig 4.3 and 4.6

Static hot	ра	Static hot	°c	Static hot	m/s
Pressure		Temperature		Velocity	
Hot Water	10026.58 pa	Hot Water	300 °c	Hot Water	0.021421903 m/s
Inlet 1		Inlet 1		Inlet 1	
Hot Water	10026.333	Hot Water	295.38333°c	Hot Water	0.024064828 m/s
Inlet 2	ра	Inlet 2		Inlet 2	
Hot Water	10025.786	Hot Water	290.54601°c	Hot Water	0.022582094 m/s
Inlet 3	pa	Inlet 3		Inlet 3	
Hot Water	10019.579	Hot Water	285.73123°c	Hot Water	0.08030916 m/s
Inlet 4	ра	Inlet 4		Inlet 4	
Hot Water	10012.767	Hot Water	276.95327°c	Hot Water	0.065290745 m/s
Inlet 5	ра	Inlet 5		Inlet 5	
Hot Water	10006.885	Hot Water	276.95327°c	Hot Water	0.061521733 m/s
Inlet 6	pa	Inlet 6		Inlet 6	
Hot Water	10000.904	Hot Water	272.0785°c	Hot Water	0.05756541m/s
Inlet 7	pa	Inlet 7		Inlet 7	
Hot Water	10000 pa	Hot Water	269.91429°c	Hot Water	0.026996851 m/s
outlet		outlet		outlet	
Net value	10014.57 pa	Net value	283.60457°c	Net value	0.046682321 m/s

Table 4.1 Hot water pressure

Fig 4.2.1 Hot water Temperature

The process of this below shown figures the and values is done same as the process that shown in above in 4.4 so that the process is continued in the same step by selecting the temperature by selecting Mass weighted area and select the choices for figuring the outcomes as heated water channels and outlets and furthermore for cool water channels and outlets as shown in below fig 4.4.1, 4.5.1 & 4.6.1

Static cool	Pa	Static cool	°c	Static cool	m/s
pressure		Temperature		Velocity	
Cool water	10000.146	Cool water inlet	100°c	Cool	0.01204982
inlet	Pa			water	m/s
				inlet	
Cool water	10000 Pa	Cool water	133.64077°c	Cool	0.012187698
outlet		outlet		water	m/s
				outlet	
Net value	10000.073	Net value	116.82036°c	Net value	0.012118759
	Pa				m/s

 Table 4.4.1 Cool water pressure
 Table 4.5.1 Cool water Temperature
 Table 4.6.1 Cool

 water Velocity
 Table 4.5.1 Cool
 Table 4.5.1 Cool

Volume 23, Issue 2, November 2023

Fig 4.4.1.1 Hot water pressure

Table 4.5.1.1Cool water Temperature

Table 4.6.1.1 Cool water Velocity

5 Table of Maximum Net Values of each analysis Results

Here is table 5.1 of maximum net value of pressure that taken from the above computing values that defined from mass weighted area process in setup and solutions.

Number of different analyses done	Net values	of each	Net valı	ues of	each	analysis
in this process	analysis pro	cess at hot	tprocess a	at Cool	water	pressure
	pressure Pa		Ра			
1.Cylindrical shell with circular	10017.333 P	a	10000.20	3 Pa		
coiled counter flow						
2.Cylindrical shell with circular	10017.42Pa		10000.20	2 Pa		
coiled parallel flow						
3.Hexagonal shell with	10014.504 P	a	10000.07	3 Pa		
hexagonal coiled Counter flow						
4.Hexagonal shell with	10014.57 Pa		10000.07	3Pa		
hexagonal coiled Counter flow						

Table 5.1 Maximum net values of pressure in both hot and cool water of both parallel &counter flow

The below shown Graphs 5.1.1 & 5.1.2 are the Graph bar view for the above shown table 5.1 to understand the maximum values of Pressure of both Hot fluid and cold fluid.

Graph 5.1.1: Maximum Net value of hot water pressure Graph 5.1.2Maximum Net value of cool water pressure

Here is table 5.2 of maximum net value of Temperature that taken from the above computing values that defined from mass weighted area process in setup and solutions.

Number of different	Net values of each analysis	Net values of each analysis
analyses done in this	process at hot water	process at Cool water
process	Temperature °c	Temperature °c
Cylindrical shell with		117.08651 °c
circular coiled counter	282.99886 °c	
flow		
Cylindrical shell with	281.3954 °c	116.90358 °c
circular coiled counter		
flow		
Hexagonal shell with		
hexagonal coiled	285.37058°c	117.02111 °c
Counter flow		
Hexagonal shell with	283.60457 °c	116.82036°c
hexagonal coiled		
Counter flow		

Table 5.2Maximum net values of Temperature in both hot and cool water of both parallel &counter flow

The below shown Graphs 5.2.1 & 5.2.2 are the Graph bar view for the above shown table 5.2 to understand the maximum values of Temperature of both Hot fluid and cold fluid.

Graph 5.2.1Maximum Net value of hot water Temp Graph 5.2. water Temp

Graph 5.2.1.2Maximum Net value of Cool

Here is the table 5.3of maximum net value of Velocity that taken from the above computing values that defined from mass weighted area process in setup and solutions.

Number of different analyses done	Net values of each	Net values of each
in this process	analysis process at	analysis process at
	Hot water	Cool water
	Velocity[m/s]	Velocity[m/s]
1.Cylindrical shell with circular	0.078355549 [m/s]	0.0184480855 [m/s]
coiled counter flow		
2.Cylindrical shell with circular	0.078359647 [m/s]	0.018474578 [m/s]
coiled counter flow		
3.Hexagonal shell with hexagonal	0.047480487 [m/s]	0.012118638[m/s]
coiled Counter flow		
4.Hexagonal shell with hexagonal	0.046682321 [m/s]	0.012118759 [m/s]
coiled Counter flow		

Table 5.3 Maximum net values of Velocity in both hot and cool water of both parallel &counter flow

The below shown Graphs 5.3.1 & 5.3.2 are the Graph bar view for the above shown table 5.3 to understand the maximum values of Velocity of both Hot fluid and cold fluid.

Graph 5.3.1Maximum Net value of hot water Velocity Graph 5.3.2 Maximum net value of cool water velocity

6 Conclusion

- In this paper I have planned the intensity exchangers tubes in round loop and hexagonal snaked shapes with round and hexagonal round and hollow shells.
- To examine the strain, velocity and temperature decreases by utilizing the significant and proficient programming Ansys workbench.
- so, we involved various materials for barrel shaped shells Tantalum-carbide and Hafniumcarbide for inside curls and liquid is utilized as water-fluid for both boiling water and cool water for equal stream and counter stream.
- So, as we saw in the above examination that hexagonal shell with Tube shaped looped Counter stream has the maximum most elevated esteems.
- That contrasted with staying 3 investigations with the Heated water pressure worth of 10017.333 [Pa] Boiling water Temperature worth of 285.37058°c yet in coming to speed the hexagonal shell with Round and hollow curled Equal stream has the most elevated that other examination with worth of boiling water Speed 0.078359647 [m/s].
- Hexagonal shell with Tube shaped wound Counter stream has the most elevated vales even in cool water stream of tension 10000.073pa.
- However, in Temperature and speed the hexagonal shell with Barrel shaped snaked Equal stream has the most elevated values when contrasted with counter stream that cool water Temperature 117.08651 °c and Cool water Speed 0.018474578 [m/s]
- As in this way I have analyzed each process by using Ansys workbench tool [7] [28]

7 Reference

[1] [A]D. Bhanuchandrarao, [B]M. Ashok Chakravarthy, [C]Dr. Y. Krishna, [D]Dr. V.V. Subba Rao, [E]T. Hari Krishna1 "CFD Analysis and Performance of Parallel and Counter Flow in Concentric Tube Heat Exchangers" Vol. 2, PP. 2782-2792, April 2013.

Catalyst Research

Volume 23, Issue 2, November 2023

[2] [A]Miss Sneh, [B]H. Dhoria, [C]Mr. E. Manoj Kumar, [D]I.V.S. Yeswanth, [E]Miss Lakshmi Jayanti "Cfd Analysis on Concentric Tube Heat Exchanger in Parallel and Counter Flow Direction" Miss Sneha.H. Dhoria Vol. 8 pp 20-25, January 2018, DOI:10.9790/9622-0806022025.
[3] [A]Abriham Bekele, [B]Etagegn Alemayehu "Design and Analysis of Double pipe counter flow heat exchanger Using Ansys Fluent" Volume 10 PP. 73-81 ,May 2022.

[4] [A]Mrs. Kirti, [B]B.Zare, [C]Ms. Dipika Kanchan, [C]Ms. Nupur Patel. "Design of Double Pipe Heat Exchangers" Vol. No.5, PP. 161-174, November 2016.

[5] [A]Dhruba Jyoti Bhattacharjee "Analysis the Performance of Parallel Flow and Heat Transfer in Concentric Tube Heat Exchanger using Computational Fluid Dynamics" Volume: 09 PP.95-104, 2022.

[6] [A]M. Vignesh, [B]V M Karthikeyan, [C]R. Lokeshwaran, [D]M. Jaffer Ameer "Study of Parallel and Counter Flow Heat Exchanger with Spiral Fins" VOL 7, PP.1616-1625, June 2020.

[7] [A]Ram Kishan, [B]Farah, [C] Devendra. [D]Ajay Kumar Sharma* "CFD Analysis of heat exchanger Models Design using Ansys Fluent" PP. 1-9 Volume 11, September 2020, DOI: https://www.doi.org/10.34218/IJMET.11.2.2020.001.

[8] [A]Farid Ahmed, [B]MD Minaruzzaman Sumon, [C]Muhtasim Fuad, [D]Ravi Gugulothu,
[E]AS Mollahi* "Numerical Simulation of Heat exchanger for analyzing the performance of parallel and counter flow" Vol 16, PP.145-152 February 2021. DOI: 10.37394/232012.2021.16.17.
[9] [A]Bikram Kesari Sahu, [B]Dr Ramesh Kumar Mallik "CFD Analysis of Heat Exchanger Using ANSYS Fluent in Laminar Flow" Volume 5 PP. 1-8, May 2018.

[10] [A]Rahul Singh Umesh Chandra Verma "CFD Analysis of Shell and Tube Heat Exchanger" Vol. 5, PP. 568-573, May 2017.

[11] [A]Jakka Ranganayakulu, [B]B. Rama Krishnaiah, [C]P. Vijaykumar, [D]Bheemagouni Pavan Kumar Goud, [E]T. Sumalatha. "Design And Thermal Analysis of Parallel Flow Heat Exchanger" Vol.10, PP. 0355-0362 ,March 2018,

[12] [A]Mr. Deepak Kumar S, [B]Dr. Saravanan P, [C]Mr. Periyannan L "Design and Performance Analysis of Double Pipe Heat Exchanger in Counter Flow" Volume 7 PP.8-13, April 2020, doi:10.14445/23488360.

[13] [A]M. Ujwala, [B]A. Swamy, [C]C. Sravanthi, [D]Y. Akshay Kumar "Performance of Refrigerants using CFD in Heat Exchangers" Journal Volume-9 PP.1411-1415, February 2020, DOI: 10.35940.

[14] [A]Golkonda Venkata Apparao, [B]K. Srinivasa Rao "CFD Analysis of a Double Pipe Heat Exchanger by using Fluid Based Nanomaterials" Volume: 3 PP.209-213July ,2019.

[15] [A]Baru Debtera, [B]Ibsa Neme [C]Venkatesa Prabhu "CFD Simulation of a Double Pipe Heat Exchanger: Analysis Conduction and Convection Heat Transfer" Volume 7, PP.329-338, March 2018.

[16] [A]Zeynep Küçükakça Meral, [B]Nezaket Parlak "Experimental Research and CFD simulation of Crossflow Microchannel Heat Exchanger" Vol. 7, PP. 270-283, June 2021.

[17] [A]Devvrat Verma Aanand Shukla "Design of Shell and Tube Type Heat Exchanger using CFD Tools" Volume 4, PP.6-12 May 2017.

[18] [A]K. Ravikumar, [B]Ch. Naga Raju, [C]Meera Saheb, "CFD Analysis of a Crossflow Heat Exchanger with Different fin thickness" Volume 13, PP. 345-362, August 2017.

[19] [A]Patricia Anne D, [B]Cruz a, [B]Ed-Jefferson E, [C]Yamat a, [D]Jesus Patrick E, [E]Nuqui b, et.al "Computational Fluid Dynamics (CFD) analysis of the heat transfer and fluid flow of copper (II) oxide-water nanofluid in a shell and tube heat exchanger" Volume 3 PP.1-14, October 2022, Doi. 2022.100014.

[20] [A]Dhrubajyoti Bhattacharjee "CFD Analysis of Double Pipe Counter Flow Heat Exchanger" Vol 9 PP. 506-518, January 2020.

[21] [A]RNSV. Ramakanth, [B]K. Rajesh Kumar "Design and CFD Analysis of Shell and Tube Heat Exchanger" Volume 7 PP.638-641, 2018, DOI: 10.21275/6011804.

[22] [A]Shubham Gupta, [B]Karan Singh Verma "Computational Fluid Dynamics analysis of Shell and Tube Heat Exchanger with having different types of Fines" Volume 7, PP.15-27, July 2016.

[23] [A]Avinash P, [B]Shinde, [C]Mahadev L, [D]Shinde, [E]Sagar S. Yadav, Manasvi et.al "Performance Analysis of Heat Exchanger using CFD" Vol. 7, PP.3053-3063, September 2018, DOI:10.15680.

[24] [A]S. Srinivasan, "Modelling and performance Analysis of Heat Exchanger using Cfd tools" Volume 6, PP.105-112, November 2018.

[25] [A]Máté Petrik, [B]Gábor Szepsi, [C]Károly Jarmai "CFD Analysis and Heat Transfer Characteristics of Finned Tube Heat Exchangers" Vol. 14, No. 3, pp. 165–176 March ,2019, DOI: 10.1556/606.2019.14.3.16.

[26] [A]P.S. Aswin, [B]A. Mohan "CFD Analysis of Shell tube Heat Exchanger with and without Baffler" Volume: 08 PP.1302-1307, April 2021.

[27] [A]Kavita Singh, [B]P. S. Dhakar "CFD Analysis of Shell and Tube Heat Exchanger Design using Ansys Fluent" Volume 5, PP.654-659, 2018.

[28] [A]Umang K Patel, [B]Prof. Krunal Patel "CFD Analysis Helical Coil Heat ExchangerVol-3 PP.608-623 ,May 2017.

[29] [A]Amol Niphade. [B]H. A. Chavan, [C]Swapnil.S, [D]Kulkarni "Design & CFD Analysis of high-volume Heat Exchanger for dairy application" PP.13-15 ,2015.

[30] [A]Mr. Sufyan Mujawar, [B]Mr. Devendra Nade, [C]Mr. Rajat Kaware, [D]Mr. Nilesh Potdar, [E]Dr. R. N. Panchal "Analysis of Nano-Fluid and Water Using CFD for Heat Exchanger" Volume 2, PP.173-178 ,May 2022, DOI: 10.48175.