GAMMA GRAPH OF THE ZERO-DIVISOR GRAPH IN A FINITE COMMUTATIVE RING.

Sheeja $\mathbf{C l}^{\mathbf{1 , *},}$, Nidha $\mathbf{D}^{\mathbf{2}}$
${ }^{1}$ Research Scholar [Reg.No:20213112092014], ${ }^{2}$ Assistant Professor ${ }^{1,2}$ Research
Department of Mathematics, Nesamony Memorial Christian College, Marthandam 629 165, Tamil Nadu, India.
${ }^{1,2}$ Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627
012, Tamil Nadu, India.
*Coressponding author: ${ }^{1}$ sheeja1096@gmail.com ,
²dnmaths@nmcc.ac.in

Abstract

Consider the family of γ-sets of a zero-divisor graph $\Gamma\left(Z_{n}\right)$ of finite commutative ring Z_{n} and define the γ-graphs $\Gamma\left(Z_{n}\right)(\gamma)=(V(\gamma), E(\gamma))$ of $\Gamma\left(Z_{n}\right)$ to be the graph whose vertices $V(\gamma)$ correspond 1-to-1 with the γ - sets of G, and two γ sets, say S_{1} and S_{2}, form an edge in $E(\gamma)$ if there exists a vertex $v \in S_{1}$ and a vertex $w \in S_{2}$ such that (i) v is adjacent to w and (ii) $S_{1}=S_{2}-\{w\} \cup\{u\}$ and $S_{2}=S_{1}-\{u\} \cup\{w\}$. Using this definition, we find some results. Also, Let R be a commutative ring. The gamma graph of the zero-divisor graph $\Gamma(R)$ of R is the graph $\gamma \cdot \Gamma(R)$ with vertex set as the collection of all gamma sets of the zero-divisor graph $\Gamma(R)$ of R and two distinct vertices Λ and B are adjacent if and only if $|A \cap B|=\gamma(\Gamma(R))-1$ Using this definition, we have one basic property of $\gamma \cdot \Gamma(R)$.

Keywords: Commutative Ring, Zero-divisors, Zero-divisor graph, gamma sets, gamma graph. 2020 subject classification: 05C25,05C69.

1. INTRODUCTION

The study of algebraic structures, using the properties of graph, become an exciting research topic in the past twenty years, leading to many fascinating results and questions. In the literature, there are many papers assigning graphs to rings, groups and semigroups. Let R be a commutative ring with identity and $Z(R)^{*}$ be the set of all non-zero zero-divisors of R. D.F. Anderson and P.S. Livingston[1], associates a graph called zero-divisor graph $\Gamma(R)$ to R with vertex set $Z(R)^{*}$ and for any two distinct $x, y \in Z(R)^{*}$, the vertices x and y are adjacent if and only if $x y=0$ in R.
For $v \in V$, the associate class of v is defined as $A_{v}=\{u v: u$ is unit in $R\}$. Let $\quad n=$ $p_{1}{ }^{k_{1}} p_{2}{ }^{k_{2}} p_{3}{ }^{k_{3}} \ldots p_{r}{ }^{k_{r}}$, where $p_{1}, p_{2}, \ldots, p_{r}$ are primes with $p_{1}<p_{2}<\cdots<p_{r}$ and $k_{1}, k_{2}, \ldots, k_{r}$ are positive integers. Then the set of all non-zero
divisors in Z_{n}, the ring of congruent modulo n classes is given by $Z\left(Z_{n}\right)^{*}=\left\{\lambda_{i} p_{i}: 1 \leq \lambda_{i} \leq \frac{n}{p_{i}}, 1 \leq i \leq r\right\}$.
A set $D \subseteq V$ of vertices of vertices in a graph $G=(V, E)$ is called a dominating set if for every vertex $u \in V-D$,there exists a vertex $v \in D$ such that v is adjacent to u. A dominating set D is minimal if no proper subset D is a dominating set. The domination number of a graph G, denoted by $\gamma(G)$, is the minimum cardinality of a minimal dominating set of G. A dominating set D in a graph G with cardinality γ is called $\gamma-$ set of G.
Subramanian and Sridharan introduced the concept γ - graph $\gamma . G$ and Fricke, et.al.[3] introduced the γ-graph $G(\gamma)$.

Definition 1.1: [2] Let D be the collection of $\gamma-$ sets in G. The gamma graph of G, denoted by $\gamma . G$, is the graph with vertex set D and any two vertices D_{1} and D_{2} are adjacent if $\left|D_{1} \cap D_{2}\right|=\gamma(G)-1$.

Definition 1.2: [3] Consider the family of γ-sets of a graph G and define the γ-graphs $G(\gamma)=(V(\gamma), E(\gamma))$ of G to be the graph whose vertices $V(\gamma)$ correspond 1-to-1 with the γ - sets of G, and two γ sets, say S_{1} and S_{2}, form an edge in $E(\gamma)$ if there exists a vertex $v \in S_{1}$ and a vertex $w \in S_{2}$ such that
(i) v is adjacent to w and
(ii) $S_{1}=S_{2}-\{w\} \cup\{v\}$ and $S_{2}=S_{1}-\{v\} \cup\{w\}$.

Motivated by the above two definitions we have to introduced the gamma graph of a zerodivisor graph of a finite commutative rings.
The following results are used in the subsequent section.

Remark 1.3:[5] Let $n=p_{1}{ }^{k_{1}} p_{2}{ }^{k_{2}} p_{3}{ }^{k_{3}} \ldots p_{r}{ }^{k_{r}}$, where $r \geq 1, p_{1}, p_{2}, \ldots, p_{r}$ are primes with $p_{1}<p_{2}<\cdots<p_{r}$ and $n \neq 2 p, n \neq 3 p, p>3$ is prime. Then the number of $\gamma-\operatorname{sets}$ in $\Gamma\left(Z_{n}\right)$ is $\prod_{i=1}^{r}\left(p_{i}-1\right)$.
Remark 1.4. Let $n=p_{1}{ }^{k_{1}} p_{2}{ }^{k_{2}} p_{3}{ }^{k_{3}} \ldots p_{r}{ }^{k_{v}}$, where $r \geq 1, p_{1}, p_{2}, \ldots, p_{r}$ are primes with $p_{1}<p_{2}<\cdots<p_{r}$ and $n=3 p_{i} p>3$ is prime. Then the number of $\gamma-\operatorname{sets}$ in $\Gamma\left(Z_{n}\right)$ is $\prod_{i=1}^{r}\left(p_{i}-1\right)+1$.

Remark 1.5. Let $n-p_{1}{ }^{k_{1}} p_{2}^{k_{2}} p_{3}^{k_{3}} \ldots p_{r}^{k_{r}}$, where $r \geq 1, p_{1}, p_{2}, \ldots, p_{r}$ are primes with $p_{1}<p_{2}<\cdots<p_{r}$ and $n=2 p, p>3$ is prime. Then the number of $\gamma-\operatorname{sets}$ in $\Gamma\left(Z_{n}\right)$ is 1 .

Corollary 1.6:[5] Let $n=p_{1}{ }^{K_{1}} p_{2}{ }^{K_{2}} p_{3}{ }^{K_{3}} \ldots p_{r}{ }^{k_{r}}$, where $r \geq 1, p_{1}, p_{2}, \ldots, p_{r}$ are primes with $p_{1}<p_{2}<\cdots<p_{r}$ and $n \neq 2 p, p \geq 3$ is prime, then $\gamma\left(\Gamma\left(\mathrm{Z}_{\mathrm{n}}\right)\right)=r$.
Proposition 1.7:[4] Let (R, m) be a finite commutative ring local ring with $|R|=p^{n}$ for some prime $p, n>1$ and let $x \in Z(R)^{*}$. Then $\{x\}$ is a γ - set of $\Gamma(R)$ if and only if $a n n(x)=m$. Hence the number of distinct γ - sets in $\Gamma(R)$ is $p^{k}-1$ for some $k<n$.

2. Gamma Graph $\Gamma\left(Z_{n}\right)(\gamma)$ of commutative ring $\boldsymbol{Z}_{\boldsymbol{n}}$.

Throughout this section, n is a fixed positive integer and not a prime number, $Z_{n}=\{0,1,2, \ldots, n-1\}, \Gamma\left(Z_{n}\right)$ is the Zero-divisor graph of $Z_{n}, \Gamma\left(Z_{n}\right)(\gamma)$ is the gamma graph of $\Gamma\left(\mathrm{Z}_{\mathrm{n}}\right)$ and $V=V\left(\Gamma\left(Z_{n}\right)(\gamma)\right)$ is the vertex set of $\Gamma\left(Z_{n}\right)(\gamma)$

Definition 2.1: Consider the family of γ-sets of a zero-divisor graph $\Gamma\left(Z_{n}\right)$ of finite commutative ring Z_{n} and define the γ-graphs $\Gamma\left(Z_{n}\right)(\gamma)=(V(\gamma), E(\gamma))$ of $\Gamma\left(Z_{n}\right)$ to be the graph whose vertices $V(\gamma)$ correspond 1-to-1 with the γ-sets of G, and two γ sets, say S_{1} and S_{2}, form an edge in $E(\gamma)$ if there exists a vertex $v \in S_{1}$ and a vertex $w \in S_{2}$ such that
(i) v is adjacent to w and
(ii) $S_{1}=S_{2}-\{w\} \cup\{v\}$ and $S_{2}=S_{1}-\{v\} \cup\{w\}$.

With this definition, two γ-sets are said to be adjacent if they differ by one vertex and the two vertices defining this difference are adjacent $\Gamma\left(Z_{n}\right)$.
Example 2.2: Consider the ring Z_{25}.

$$
\begin{aligned}
& Z_{15}=\{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,20,21,22,23,24\} \\
& \quad Z\left(Z_{15}\right)^{*}=\{5,10,15,20\}
\end{aligned}
$$

The zero-divisor graph $\Gamma\left(Z_{25}\right)$:
5

15

10

The γ - sets are $S_{1}=\{5\}, S_{2}=\{10\}, \quad S_{3}=\{15\}, \quad S_{4}=\{20\}$.
Now, Let $v=5 \in S_{1}$ and $w=10 \in S_{2}$.

$$
\begin{aligned}
S_{2}-\{w\} \cup\{v\} & =\{10\}-\{10\} \cup\{5\} \\
= & \{5\} \\
& =S_{1}
\end{aligned}
$$

$$
\begin{gathered}
S_{1}-\{v\} \cup\{w\}=\{5\}-\{5\} \cup\{10\} \\
=\{10\} \\
=S_{2}
\end{gathered}
$$

Also, $\{5\}$ and $\{10\}$ are adjacent.
Therefore, S_{1} and S_{2} are adjacent.
Similarly, S_{1} is adjacent to S_{3}, S_{4} and S_{2} is adjacent to S_{3}, S_{4} and S_{3} is adjacent to S_{4}

Then we get the gamma graph $\Gamma\left(Z_{25}\right)(\gamma)$ is of below form:

S_{2}

Theorem 2.3: Let n be a positive integer and not a prime number. Then $\Gamma\left(Z_{n}\right)(\gamma)=K_{1}$ if and only if $n=2^{k}$ or $n=2 p$, where $p \neq 2$ is a prime number, $k \geq 2$.

Proof: Suppose $n=2^{k}, k \geq 2$.
Then $\Gamma\left(Z_{n}\right)=K_{1}$ and so $\gamma\left(\Gamma\left(Z_{n}\right)\right)=1$.
Moreover there is only one γ-set.
Therefore, $\Gamma\left(Z_{n}\right)(\gamma)=K_{1}$.
Suppose that $n=2 p$, where $p \neq 2$ is a prime number.
Then $\Gamma\left(Z_{n}\right)=K_{1, p-1}$ and so $\gamma\left(\Gamma\left(Z_{n}\right)\right)=1$.
There is only one γ-set.
Therefore, $\Gamma\left(Z_{n}\right)(\gamma)=K_{1}$.
Converse part is obviously from Remark 1.3.

Theorem 2.4. Let \boldsymbol{n} be a positive integer and not a prime number. Then $\Gamma\left(Z_{n}\right)(\gamma)=K_{1,2(p-1)}$
if and only if $n=3 p$, where $p>3$ is a prime number.
Proof: Assume that $n=3 p$, where $p \neq 2$ is a prime number.
Then $\Gamma\left(Z_{n}\right)(\gamma)=K_{2,(p-1)}$ and so $\gamma\left(\Gamma\left(Z_{n}\right)\right)=2$.
Also, the number of $\gamma-$ sets is $2(\mathrm{p}-1)+1$.
Join the vertices that satisfy the two gamma graph $\Gamma\left(Z_{n}\right)(\gamma)$ conditions.
Then we get, $\Gamma\left(Z_{n}\right)(\gamma)=K_{1,2(p-1)}$.

The converse part is trivial.
Theorem 2.5: Let n be a positive integer and not a prime number. Then $\Gamma\left(Z_{n}\right)(\gamma)=K_{p-1}$ if and only if $n=p^{k}$ or $n=2^{k_{1}} p^{k_{2}}$, where p is a prime number, $p>3$ and $k \geq 2, k_{1}, k_{2}>1$.

Proof: Assume that $n=p^{k}$ or $n=2^{k_{1}} p^{k_{2}}$, where p is a prime number, $p>3$ and $k \geq 2, k_{1}, k_{2}>1$.
If $n=p^{k}, k \geq 2$, then $\left\{\mu p^{k-1}\right\}$ for $1 \leq \mu \leq p-1$ is a minimal dominating set in $\Gamma\left(Z_{n}\right)$.
Hence $\gamma\left(\Gamma\left(\mathbb{Z}_{n}\right)\right)=1$.
By remark 1.3, $|V|=p-1$.
Thus, $\Gamma\left(Z_{n}\right)(\gamma)=K_{p-1}$
If $n=2^{k_{1}} p^{k_{2}}, k_{1}, k_{2}>1$, by remark 1.3 , the number of $\gamma-$ sets are $p-1$.
That is., $|V|=p-1$.
Here each dominating sets satisfies the the gamma graph $\Gamma\left(Z_{n}\right)(\gamma)$ conditions.
So we can make each vertices adjacent to one another.
Thus, $\Gamma\left(Z_{n}\right)(\gamma)=K_{p-1}$
Conversely, Assume that $\Gamma\left(Z_{n}\right)(\gamma)=K_{p-1}$
Then the number of $\gamma-$ sets is $p-1$.
By Remark 1.3, $r=1$ and n is not a prime.
Hence $n=p^{k}, k \geq 2$, where p is a prime number, $p>3$.
Now, Suppose $n=p_{1}{ }^{k_{1}} p_{2}^{k_{2}}, k_{1}, k_{2}>1$ and $p_{1}>2$.
Which is obviously a contradiction.
Therefore $p_{1}=2$.
Hence $n=p^{k}$ or $n=2^{k_{1}} p^{k_{2}}$, where p is a prime number,
$p>3$ and $k \geq 2, k_{1}, k_{2}>1$.

3. Gamma Graph $\boldsymbol{\gamma} \cdot \Gamma\left(\boldsymbol{Z}_{n}\right)$ of commutative ring R

Definition 3.1:[6] Let R be a commutative ring. The gamma graph of the zero-divisor graph $\Gamma(R)$ of R is the graph $\gamma \cdot \Gamma(R)$ with vertex set as the collection of all gamma sets of the zerodivisor graph $\Gamma(R)$ of R and two distinct vertices A and B are adjacent if and only if $|A \cap B|=\gamma(\Gamma(R))-1$
Example 3.2: Let $R=Z_{2} \times Z_{2} \times Z_{2}$. Clearly,
$V(\Gamma(R))=\left\{u_{1}=(1,0,0), u_{2}=(0,1,0), u_{3}=(0,0,1), v_{1}=(0,1,1), v_{2}=(1,0,1), v_{3}=\right.$ $(1,1,0)\}$
Then the zero-divisor graph $\Gamma(R)$:

Here, there are $8 \quad \gamma-$ sets in $\Gamma(R)$ and hence
$V(\gamma . \Gamma(R))=\left\{x_{1}=\left\{u_{1}, u_{2}, u_{3}\right\}, x_{2}=\left\{v_{1}, v_{2}, v_{3}\right\}, x_{3}=\left\{u_{1}, v_{2}, v_{3}\right\}, x_{4}=\right.$ $\left\{v_{1}, u_{2}, v_{3}\right\}, x_{5}=\left\{v_{1}, v_{2}, u_{3}\right\}, x_{6}=\left\{v_{1}, u_{2}, u_{3}\right\}, x_{7}=\left\{u_{1}, v_{2}, u_{3}\right\}, x_{8}=\left\{u_{1}, u_{2}, v_{3}\right\}$
Then the gamma graph $\gamma . \Gamma(R)$ is of the form:

Theorem 3.3: Let (R, m) be a finite commutative local ring with $|R|=p^{n}$ for some prime $p, n>1$. Then $\gamma \cdot \Gamma(R)=K_{p^{k}-1}$, for some $k<n$.
Proof: Let $I=\bigcap_{x \in m^{*}} \operatorname{ann}(x)$ be an ideal in R and $|I|=p^{n}$ for some $k<n$.
By proposition 1.7, $\gamma\left(\Gamma(R)=1\right.$ and for each $y \in I^{*}, a n n(y)=m$ and $\{y\}$ is a $\gamma-\operatorname{set}$ of $\Gamma(R)$
Thus, the number of $\gamma-$ sets $\Gamma(R)$ is $p^{k}-1$ and intersection of any two $\gamma-$ sets is empty.
Therefore, $\gamma . \Gamma(R)=K_{p^{k}-1}$, for some $k<n$.

4. Conclusions

In this paper, we have to find some results on Gamma Graph of a Zero-divisor graph $\Gamma\left(Z_{n}\right)(\gamma)$ and $\gamma . \Gamma(R)$. Further, we can extend these concept to total graph, order graph, comaximal graph etc...

References

[1] Anderson D.F, Livingston P.S. The Zero-divisor graph of a Commutative ring. J.Algebra ,217:434-447, 1999. DOI:10.1006/jabr.1998.7840.
[2] Aparna Lakshmanan S and Vijaya Kumar A, The Gamma Graph of a Graph, AKCE International Journal of Graphs and Combinatorics,No.1, 53-59,2010, DOI: 10.1080/09728600.2010.12088911.
[3] Fricke G, Hedetniemi S.M, Hedetniemi S.T and. Hutson K. R, γ - Graphsof Graphs, Discuss .Math .Graph Theory 31517-531,2011
[4] Tamil Chelvam and K. Selva kumar, On the intersection graph of gamma sets in the zerodivisor graph, Discrete Mathematics, Algorithms and Applications, Vol.7, No. 12015 . DOI: 10.1142/S1793830914500670.
[5]. Tamil Chelvam and K. Selva kumar, Intersection graph of gamma sets in the zero-divisor, Journal of Advanced Research in Pure Mathematics, Vol. 4 Issue. 4, pp.57-66, 2012, DOI:10.5373/jarpm.1183.112111.
[6]. C.Sheeja and D. Nidha, A note on gamma graph and intersection graph of a graph, Indian Journal of pure and Applied Mathematics., Submitted.

