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Abstract: In this paper we studied a Five dimensional FRW space-time model in the presence of
bulk viscous fluid in the frame work of Brans and Dicke (Phys. Rev. 124:925, 1961) scalar—tensor
theory of gravitation. At the same time the we studied another model known as spatially
homogeneous and anisotropic Kantowski-Sachs space-time is considered in the scale covariant
theory of gravitation proposed by Canuto et al. (Phys. Rev. Lett.39:429,1977) . We obtain
determinate solution of the field equations. Physical properties of the models are also discussed.
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1. Introduction:

It is well known that matter distribution is satisfactorily described by a perfect fluid due to a
large scale distribution of galaxies in our universe. However, a realistic treatment of the problem
requires the condition of material distribution other than the perfect fluid. We know that when
neutrino decoupling occurs, the matter behaves as a viscous fluid in an early stages of the universe
[16]. Bulk viscosity plays an important role in cosmology in getting the recent scenario of
accelerated expansion of the universe [19, 20] popularly known as the inflationary phase. Hence
in recent years cosmological models with bulk viscosity has become an important subject of
investigation. Both in general relativity and in modified theories of gravitation [17]. It was shown
that inflationary model [18], extended inflationary model [13], hyper extended inflationary model
[24], Chaotic inflation [14] are based BD theory. In this theory, besides a gravitational part, a
dynamical scalar field has been introduced to account for the variable gravitational constant to
incorporate Mach’s principle.

Study of five dimensional space time is important because of the fact that cosmos at its early
stage of evolution might have had a higher dimensional era. Marciano[15] suggested that the
experimental detection of time variation of fundamental constants provide strong evidence for the
existence of extra dimension. The extra dimension in the space time contracted to a very small size
of Planck length or remain invariant. Further, during contraction process extra dimensions produce
large amount of entropy which provides an alternative resolution to the flatness and horizon
problem [1,10] were attracted to the study of higher dimensional cosmology because it has physical
relevance to the early times before the universe has undergone compactification transitions.

In formulating general theory of relativity, Einstein was guided by principle of covariance,
principle of equivalence and principle of Mach. However, Einstein himself pointed that Einstein’s
theory of gravitation does not incorporate Mach’s principle satisfactorily. Hence several
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alternative theories of gravitation have been formulated from time to time. Also, the recent
discovery of accelerated expansion of the universe[ 19,20] stimulated interest in alternative theories
of gravitation. Noteworthy among them are scalar-tensor theories of gravitation formulated by
Brans and Dicke [6] and Saez and Ballester [21], modified theories like f(R) [8] and f(R,T) [11]
theories of gravity. Brans-Dicke (BD) theory introduces an additional scalar field @ interacting
equally with all forms of matter besides the metric tensor g;; and dimensionless coupling constant
. This scalar field is introduced to account for variable gravitational constant. Saez and
Ballester[21] introduced a scalar-tensor theory of gravity in which metric is coupled to
gravitational constant. This theory helps to solve the ‘missing mass’ problem. It is well known that
theories of gravity with scalar fields are most important due to their vast cosmological implications
[5]. Scale covariant theory of gravitation proposed by Canuto et al.[7] is another important
modification of Einstein’s theory of gravitation. This theory is a viable alternative general relativity
[25,26] which also admits a variable gravitational ‘constant’. In this theory physical quantities are
measured in atomic units whereas Einstein’s field equations are valid in gravitational units.

In view of the importance and relevance of modified theories of gravitation to modern
cosmology, investigation of cosmological models in these theories are attracting more and more
attention. Cosmic strings and Bulk viscosity play a vital role in the early stages of evolution of the
universe. Strings arise as a random network of stable line-like topological defects during the phase
transition in the early universe. Massive closed loops of strings serve as seeds for the formation of
large structures like galaxies and cluster of galaxies at the early stages of evolution of the universe.
Bulk viscosity contributes negative pressure term giving rise to an effective total negative pressure
stimulating repulsive gravity which overcomes attractive gravity of matter and gives an impetus
to the accelerated expansion of the universe popularly known as the inflationary phase. In view of
the above discussion, bulk viscous cosmic string models in modified theories of gravitation have
been investigation by several authors. In particular, The above discussion and the investigations
inspired us to investigate, in this paper, Kantowski-Sachs bulk viscous cosmic string cosmological
models in the scale covariant theory of gravitation proposed by Canuto et al.[7].The present article
is organized as follows: In Sect. 2 & Sec.3 presented two cases which includes the field equations
and physical parameters of the models have been derived. Section 4 deals with the some
conclusions about the models.

2. Case-1
2.1 Metric and field equations
We consider FRW five dimensional space time metric in the form

2
ds? = dt? — a?(t) [% + r2(d6? + sin?0dg?) + (1 — krz)dllfz] (1)
where a(t) is the scale factor of the universe, k = 1, 0, —1 for space of positive, vanishing and

negative curvature representing closed, flat and open models of the universe respectively. The non-
zero components of the Einstein tensor Gji for (3.1) are given by

3(a)?  3d . 3k 6(a)? = 6k
=6t=6t=6=-(CF+2+3) 6 =-(F+%)

a? a? a?

)
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Now using commoving coordinates, Brans-Dicke field equations for the metric (1) can be derived
as

. w (N2 aqi

L +o+2(5) +2 =snop 3)
L2

3—a+—+ 2+2(5) 3;? ®—8 n®~'p )

®+@_8n(3+2w) 1(p — 4p) (5)

p+4;(p+p)=0 (0)

(For detailed derivation of above equations see Appendix-I)
The physical parameters 'H' & 'q’ are defined by

H=4 (7)

a
_ —(H+H?)

e (8)
2.2 Solutions and the model
Field equations (3) to (6) are three independent equations in five unknowns namely a, @,p,p & {
[Equation (6) being the consequence of Equations (3) to (5)]. Hence we use the condition (2.7)
and the well accepted relation between scalar field @ and the universe scale factor a(t) .
® = @yat , where @, and [ > 0 are constants. 9)
T=Ti=p—4p=0, i=0,1,2,3,4 (10)
Closed model (k=1)
Here the field equations (3) to (5) with the support of equation (9) produce the succeeding
solutions for the scale factor

1
a(®) = |(3) (aot + t)] "™ (11)
Now with the proper choice of coordinates and constants, we can write the metric (1), with
the help of (11), as (ie we choose ay = 1,t, = 0)

ds? = dt? — [(”4) t]“‘* [ I+ r2(d6? + sin?6d9?) + (1 — rz)dwz] (12)
l@o
Also the physical quantltles are
l+4
0= 0n[(&) (13)

The model (12) signifies five dimensional FRW bulk viscous radiating models with the
following physical parameters which are significant in the discussion of cosmos.

/o= () -

- (2 .
, -2

om0 =0 () ezt ol ()7 "
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. wl?+81+12 4\ e | [(1+4) Ji+e
8mp = &Do I 2(1+4)2¢2 +6 {(l%) t} [(l(bo) t] (17
-2
_ 1+4 _ l+4 z+4 wl*+81+12 (l+4) }z+_4
8m¢ = Q)O( )( £) [ 100 ] [2(1+4)2t2 100 ty  t (18)

Open model (k = -1)

In this specific case, the model and the physical and kinematical quantities are
2

17, 2
ds? = de? — () | [ + r2(d6? + sin?60d0?) + (1 + r2)dw?]
0 i
(19)
L r -2
1+4)  Ji+a |wl2+81+1 1+4\ i+
sp = 0, [( ) 2ot — 6 (1) 2
-2

_ l+4 1+4 wl?+81+12 1+4\ \i+a

orp = o[ (5) 7 2ot (29 e
-2

_ 1+4 _ l+4 z+4 wl?+8l+1 L+4) i+
ong = 0 (4* ><e o) [ (15 ] [t - 6{(28) ™ @)
Flat model (k = 0)
In this particular case, the model and the physical and kinematical quantities are
ds? = dt? — [(”4) t]“‘* [dr? + 12(d6? + sin?0dp?) + d¥?] (23)

l
I+4 wl?+81+12
8mp = Do [(l@o)t] [2(l+4-)2t2] (24)
1+4 z+4 wl?+81+12

Bmp = €009 [( ) (t )] [2(l+4)2t2 ] (2)

_ 1+4 1+4 z+4 wl*+81+12
8m¢ = Q)O( )( ~ &) [(l@o) ] [2(l+4)2t2 ] (26)

2.3 Physical discussion of the model

Equations (12), (19) and (23) represent FRW five dimensional radiating closed, open and
flat models in BD theory .It might be apparent that there is no initial singularity for all the models.
In closed and open models the p, p and { diverge initially and decrease with time. In the flat
model the p, p and { decreasing with time and will become zero for enormously larger values of
t. Also they all diverge at the initial epoch. The spatial volume in all the models is equal and
increases with time and tends to infinity for substantially large time. The middling Hubble’s
parameter given by Equation (15) is similar for all the models and will diverge at the initial epoch,
ie.at t=0 and will approach infinity as t becomes infinitely large. The models will support us to
comprehend the spatially homogeneous and isotropic bulk viscous universe in five dimensions just
before compactification transition. The scalar field in all the models increases with time the
deceleration parameter in each case is ¢ = [ + 3 which shows that the models in five dimensions
decelerate in the standard way.
3. Case-2
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3.1 Metric and Field equations
Consider the Kantowski-Sachs space-time specified by
ds? = dt* — E?dr? — F?(d6? + Sin%6 dg?)

Kantowski-Sachs spacetimes (1966) signify anisotropic and homogeneous
(contracting) cosmologies. They also deliver models where the things of anisotropy can be
projected and paralleled with FRW cosmologies. Also these space-times play a significant role in
understanding the accurate picture of the universe immediately after the big bang.

Here the energy momentum tensor T;; is specified by
Tij = (p + P) ww; — pgij — Axix;
and p= p— 3CH
also, ut = &%, a four-velocity vector which fulfills
uiuj =1, xixj =1 and uixl- =0
and Tl =A—p, T =T =-p, Tf=p
Here p,p, A and { are functions of cosmic time t only.

Using commoving coordinates and egs.(2) to (5) the field equations for the metric (1) yield the

following equations

E+;+Ez+a‘a+za:‘8ﬂ“mp
EF F2 1 @ 92 ¢ _
ZEE+W+;3—5+3E+—(~+})—8mK¢m

(For detailed derivation of above equations see Appendix-II)
p+(p+p)u"k+p( 9 +3p2=0
For the metric (27) this takes the form
. (E . F ¢ _p
p+ o+ (g+25)+p(G+g)+305=0
For the metric (7.1), we define the following parameters
And “V” is assumed by
V = b3 = EF?
where b(t) is the scale factor of the universe.
The ‘H’ is specified by

1 1(E F
H=3(H +H,+Hy)=3(z+27)

Where H,, H,, H; are maneuvering Hubble’s strictures in X,y and z directions.

The mean anisotropy parameter A,is defined as
Ay =333, (5D? AH = H;— H,i=123
The scalar spreading out 6 and shear scalar are given by
6 =uk=2+25

5 e EF]

3lez T 2 EF

(27)

increasing

(28)
(29)

(30)
(€2))

(32)
(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)
(41)
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3.2 Solutions and the model
The field equations (31) to (33) and (36) reduce to the following equations.

F E F?

E‘E+E__+__2 (———)—8nG(®)/1 (42)
2 4+ 22438 4 2(L 4 20) = 8nG(9) 43
EF ' F2  F2 ¢ 92 " @ \E 7)o p (43)

These are two self-governing equations in five unknowns 4, B, p, p and A . Hence forth to find a
determinate resolution we have
E =F' wherel # 1 (44)
P=p—3(H = ¢p (45)
wheree =€y — 8 (0< €y, <1)and p = €yp, €y and B are constants.

q =-b % = constant (46)
which admits the solution for scale factor

1
b(6) = (c1t + ¢5) /1+a (47)
Now from Equations (7.11), (7.18) and (7.21) we obtain the expressions for the metric coefficients

as
31 3
E = (cit + ¢)0002 | F = (¢it + ¢,) 000 (48)

By a suitable choice of integration constants (i.e. ¢; = 1 and c, = 0) we can write the space-
time (27) in the form

6l

ds? = dt? — ta+ot+2)dr? — t(1+q)(l+2) a+9+2)(dh? + sin?0d¢p?) (49)
3.3 Physical Discussion
Equation (49) signifies KS bulk viscous string astrophysical model in a scale covariant theory of
gravitation. In this model, the kinematical and physical parameters of cosmology are the following:

3

V =t/1+q (50)
3

0 = (1+q)t 1)

2 3(-1)?

o= (1+2)2(1+q)2t2 (52)

A4, =0 (53)
1

H= (1+q)t ©4)

_ 18QLDHI2(4)(5+20) | -—
8nG (®) 2(1+q)2(1+2)2t2 ot (55)
_ 18(2l+1)+(l+2)2(1+q)(5+2q) %
816 ((Z))p =y [ TRt 1+q)(1+2) (56)

18(Zl+1)+(l+2)2(1+q)(5+2q)

8nG(0)] = (60 6) 1+ )t[ 2(1+q)2(1+2)2¢2

The above results can be used for a physical discussion of the universe represented by equation
(7.23).The model does not possess initial singularity i.e. at t = 0.The universe exhibits spatial
expansion as t increases because 1 + g > 0, The parameters 8,0 ,H ,p,p,and { diverge for
t = 0 and vanish as t — oo. It may be observed that the scalar field in the model vanishes at t = 0

6
(1+q)(l+z)] (57)
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2
and becomes infinite as t increases indefinitely. It can be seen that % decreases with time which

shows that anisotropy dies down with time and ultimately the model becomes isotropic in view of
the fact that the average anisotropy parameter 4, in this model vanishes. This shows that there is
a transition from deceleration to the accelerated phase of the universe at late times which is in
accordance with the present scenario of accelerated expansion of the universe. It can also be seen
that when [ = 1 the shear scalar o2 vanishes so that our model becomes isotropic shear free.

4. Conclusions

From case-1 Cosmological models corresponding to viscous fluid distribution with trace free
matter source in Brans-Dicke [6] theory of gravitation have been obtained, in this chapter a closed,
open and flat FRW radiating viscous fluid models in five dimensions are represented by the models
obtained. It is observed that all the physical quantities diverge at initial epoch and vanish for
infinitely large values of cosmic time. The spatially homogeneous and isotropic universes in five
dimensions just before compactification transition can be understood by the models. Also it is clear
that from case-2, The Kantowski-Sachs space time in the scale covariant theory of gravitation
postulated by Canuto et al. has been discussed. We have obtained the exact solutions of the field
equations of this theory, when the sources of matter is a bulk viscous fluid with one dimensional
cosmic strings, we got these by using (i) special law of variation for Hubble’s parameter proposed
by Berman [4], (ii) the shear scalar of the space time is proportional to scalar expansion and (iii)
the fluid is barotropic so that p = p — 3{H = €p . It is observed that the model obtained is
nonsingular, expanding and non-rotating. It is also observed that the model does not remain
anisotropic throughout the universe evolution, so it shows a transition to an accelerated phase from
a decelerated phase, at late time. This phenomenon is however is in agreement to the late time
acceleration of the universe in modern cosmology. The various effects of the cosmic fluid may be
a possible result of the removal of the initial anisotropies in our model. Added to this, in our model,
there is a decrease in the bulk viscosity with an increase in cosmic time finally leading to an
inflationary model.
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Appendix-I
Consider FRW metric in the form
2

1—kr?
Here Taking x° =7, x!=60,x2=0,x3=¥,x* =t

The metric tensor components are

_ —a*(t)
Yoo = 1 —kr2’

gsz = —a’()(1 —kr?), gss =1 andalso g;; =0 fori#j

ds? = dt? — a?(t) +1r2(d6? + sin?0do?) + (1 — kr?)dy?

g11 = —a*(®)r?, g, = —a*(t)risin®e,

Conjugate metric tensor components are
ij = ?, where g = |gij| & G(i,j) is the expression formed by the cofactor of g;; in the

determinant | gij | .
Here g = a®r*sin?6
—(1 kr?) -1 -1 33 _ -1
a?(t) '’ o az(t)r2 "g o az(t)rzsinze' 9= az(t)(l—krz)"g
Non Zero Christoffel symbols of First kind:

B 110gik 09k 09ij
Formula : [ij, k] = E[axljl'{ ax]i B axl’i

Henceg?° =1

2

[00,0] = —_ka L 004l =—22 _.[11,0]=
: = a’r;
(1 —kr?)? (1—kr?)’
[11,4] = aar?;[2 2,0] = ra®sin?6; [2 2,1] = a®r?sinfcos0 ;
[22,4] = aar stH [33,0] = —ka?r;[33,4] = aa(l — kr?);
— a2y — 2.
[04,0] = (1k2) ;[10,1] = —a?r;[14,1] = —aar?;
[20,2] = —ra?sin?6; [2 1,2] = —a?r?sinfcosb ;
[2 4,2] = —aar?sin?6; [30,3] = ka®r; [34,3] = —aa(l — kr?)

Non zero Christoffel symbols of Second kind:

Formula: {ilj} = g'*[i j, k]

{000} 9100,0] = (1—kr 2)

{040} =9"100,4] = (1 —aiﬂ)

{101} =g°[11,0] = —r(1 - kr?)
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0 } =g°°[22,0] = —r(1 — kr?)sin?6

N
N

%212} 1112 2,1] = —sinfcos6
{242} — g**[22,4] = aar2sin20

{303} = g%[33,0] = kr(1 — kr?)
{343} = g*[33,4] = aa(l — kr?)
(8= smi0nor=?

{110} =g o= %

{114} = g''[14,1] = %

{220} =97[202] = %

{221} = g?2[21,2] = coth

{1} = 9712021 = g

{330} =9”[30,3] = %

{334} g%3[34,3] =

Ricci tensor components

ol sl + L) - Ho

Rij = R jja == aza{i} 379, 1109/g] - { '}iﬁ[log‘@] + {ﬁo;}{iﬁa}
since {1} 55 logy3])

Now

Roo = _az_a{o 0} 9% 9x0 [ 0g+/9] - {0 0} axﬁ llogy/g] + { }{o a}
d (0 0 (4
“ Roo == [ﬁ{o o+ W{o ) ﬁ@[l 093]
[{ ) s l109,/3] + {1} 5o 109 /3] | +
+o Hod * 30 o * 1o Ho')

oo Hoat 110 o)
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d kr 0 aa Jd o
Koo = - [5{(1 - er)} * 5{(1 - er)}] + 5757 |logV9]
k d 1 0
- [{(1 —ZrZ)}E [og /9] + {(1 —a?ch)} aclloaval| + {000 }{ }
A LM A A B Lo
As log,[g = log(a*.r%.5in%6) = 4log(a) + 2log(r) + 2log (sinb)
B k(1 + kr?) (ad + a?) 2 kr 2 aa 4q
Roo =~ I{u = er)Z} * {(1 - er)}l = [{(1 - er)} 7t {(1 - er)} Fl

+( kr )2+a aa +11 11 ( —kr )2 a aa
(1 —kr?) a (1—kr®) r'r (1—kr?)

—k k?r? 3(a)? ad 2k
A—lr22 " a—kr2)? (A—kr5) (A—kr5) (1—kr?)
Now R = g°°Ry,
—(1 - kr?) k?r? 3(a)? ad
T 20 I(1 k2 T A=k (I—krd) (A—kr?)) A—kr?)

Ryo =

3(a)

~RY= +4 + =
Similarly R} For i,j= 1,2,3&4 (i =j) are given by
pp=300 4, %
Ry =30 4, %
R =%

Now R = RO + R + RZ + R} + R} = 12 | fa , 12k

a? a a?
Einstein tensor components:

Formula: Gji = R} — %R
o 2 . 2
Now GO = R? _%R:(3(a) _l_g_l_%) 2(12(a)+_+ﬁ)

a? a a? a?

:_(3@ +ﬁ+%>

a? a a?

Similarly Gji Fori,j = 1,2,3&4 (i = j) are given by
3(a)> 3d 3k
Gi =—< @) +—+—>

a? a a?

a " (1-kr?)
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, 3(a)> 3d 3k

P O
, 3(a)2 3d 3k

e (12203

ot = 6(a)2
4 a2 az

Derivation of Field equations:
Formula:

1 -
Ry QUR + (Q) ¥ gij(z),k@’k) +6[®i;j — g;j00] = 8rp~?
Multiplying above with contravariant tensor g then we get
i1 —1pl
Rj =R =80T} - @2 o' ; ——6(25 ——(c) —8/0%)
Since Gji = R?' — lR and taking =i

G}?:8n®_17}i—®2(®¢ 259, )——(w — 5i0)

Whee 0% =221 0r () = 220 (2. 1y )

Gji = 87‘[(25_171; - 02 <Q) @ —56}(25,;((25"‘)

ol o) o (G o ooy

Fori=0&j=0

w 1
GO = 8mp~ 1T0 (@'OQO - 558(3,]((2)"()

@2

5 K%j +or {r00}> % <g®: 07 [ g @D]

(since 6} =1 ifi =j)
= 87T(z)—1T(§’ — % (() _ %gkla'k®'1> — % I(O + g”(Z),l {roo}) . (% + QT [air (log@)])l

= 8nPITY — % (O — %g“@A@A) — % l(O + g**0, {400}) <Zl;j + ¢ [6 Z (log\/_)Dl
a
a

GO = 8mp~'TY + %G (¢)2) _%qu ) (¢ +o [4al>l

But Here Ty; = (p + pwu; — gijp

Mixed form of above energy momentum tensor is

T = (p + pu'y; — §;p

Hence

Te = (p + P)ulug — 80p = —p (since & =1 (if i = H&u'y; = 1if i = 3)
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60 = —noip+ 2 ((@)) 5(69)- (MF“D]

3(a)Z

But GJ = —( + 4 ) then finally we get

3a_3d* 3k w @2 _3ab_§ —
T teEt2\g) " te T

Similarly we can find the remaining Field equations as follows

saz e 0 ﬂ -1
—tot (Q) + — = 8n@
®+@_8n(3+2w) 1(p — 4p)

p+4;(p+p)=0

Appendix-I1

The Kantowski-Sachs Metric is

ds? = dt? — E*dx* — F?(d6? + sin*0dp?)
Here Taking x'=r, x2=0,x3=0, x* =t
The metric tensor components are

g11 = —EZ2, 922 = —F?, 933z = —FZSin29:g44 =1

and also g;; =0 fori # j

Conjugate metric tensor components are
ij — GG
g

determinant | gij | .
Here g = —E?F*sin?0 > /—g = EF%sinf
~log/—g = logE + 2logF + log (sin®)

1m__1 _22__ 1 - __ -
Hence g = 52 'Y 29 rzsinzg’ 9
Nonzero Christoffel symbols of First kind:

N 1[0gu 90gjx 09ij
Formula: [ij, k] = E[axljl'c ax]i B 6xl’i]

[11,4] = EE ;[22,4] = FF ; [33,2] = F?sinf cos@
[33,4] = FFsin?0;[14,1] = —EE; [24,2] = —FF
[32,3] = —F2sin6 cosH ;[34,3] = —FFsin?6;

Nonzero Christoffel symbols of Second Kind:

Formula: {ilj} = g'*[i j, k]

{1} =g"11141 =

, Where g = | 9gi j| & G(i,j) is the expression formed by the cofactor of g;; in the
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} = g*22,4] = FF
= g??[33,2] = —sinfcosb

44[33,4] = FFsin%6

Il
Q

14,1] =

RIREdCTR

?2[24,2] =

Il
Q

—— ) e e
Il
Q

g33[32,3] = cotd

NN ST IN T SR
RO OWRREDN AP oo R

} = g*[34,3] = =

Ricci tensor components:

R® jji=os {iaa} - ai—a{a} + {ﬁaj }{ g } - {ﬁaa}{ﬁ'}

Ry =R =5z jFamamltoay=a] - {{}} s ltoav=al + {51 1/ )
ine {31 i} llogy=aD

Now

Riu=—53 {11} Py |log/—g] - {11} dx* [logy/~g] + {,3 1 }{1'86!}

3 (68) + S ltogy =31 - (68) Flioay=a) + ;' }{,' )+
SNSRI

[ + 5] o - ) [g o] + (L) o (G HA

« Ry = —EE — 2@
Similarly Ry, = —(F)* — FF —1— ﬂ
R33 = —sin?0 + F?sin?6 — FFstH — %sinze

R44 '— E + 2 E
Similarly R; For i,j =1,2,3&4 (i =j) are given by
R% S
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s _ 1 _F  F_ FE
R3 T F2? F2+F+FE
4 _E  SF
Ry = - +2 -
EF F 2
Now R =R%+R%-}-R§+R;l :4EE+4E+E
Here the field equations are:
1
Here (Z)zfij =200;; — 40,0 ; — gl]((D@]’;( - (Z)’k@,k)
Ré - lR + fji((b) = —87rG((Z))Tji (by neglecting A(Q))
208, r 4 i k ke i
Butfl (@) = 0 O {i ]}] _ﬁw"m —9; [(z) (W-I_ o7 {r k}) g2 ]
Nowi=1,j=1

K k
G i A st U
ool 1) 5]

]
<2000y ) [p(Sompt 07 2 ooyl - Lo

= —Z(9EE) - %(q’ ¥ ¢<§+ 29) ) <g>2
Similarly L2

7 =——(®FF) <¢+¢< g)) _(g>

3 = __(Q)FFSLnZH) (Q’ + Q’( g)) - <g>2

T EY Y LS. 2
e =g E'°F ¢
Andalso Tl =A—p, T?=T; =—-p, T =p
Now by substituting the above Ricci tensor components, energy momentum tensor components
and f]-i s fori=1,23&4 then we get
FOF2 1 6 @* ¢ (E

2b+ D Lt E St 2D) = 8nG(@0)(F - )

;+;+_._.+_——2+—.—=—8T[G((Z))P

2“+_+__'+3_+6(E+ZF) = 8nG(9)p
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