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Abstract 

Robots are used in various fields now-a-days. The major application of robots is in industries. 
Increased rate of production within stipulated period of time along with high quality of products 
are the prime requirements of the industry. This is achieved by increasing the speed of operation. 
This increase in operation speed of robots causes problems of vibrations of links which are the 
major cause of positional inaccuracies at the end-effector. Furthermore, less power consumption 
is another area of concern. This may be achieved by decreasing the inertia of robots. But this results 
in lightweight links which are prone to vibrations. This further decreases the accuracy of robots. 
The present work is based on minimizing the vibrations of these lightweight robots also known as 
flexible robots. The thesis focuses upon the dynamic modeling and control of a Two-Link Flexible 
robot having two revolute joints. For this, firstly a mathematical model of the flexible robot is 
prepared using Lagrangian dynamics. The mathematical model thus obtained involves coupling 
between the rigid and flexible motions exhibited by the flexible robot. The rigid motion is due to 
the motion of joints and is responsible for change in configuration of the robot while the flexible 
motion is due to the vibration of links. The links undergo two types of vibrations: flexural/ bending 
vibrations and torsional vibrations. The vibration analysis of the flexible links is done using both 
assumed modes method and finite elements method. A robotic system is an inertia-variant system 
because its configuration changes with time. As a result, the natural frequencies of the system 
change with time. The effect of this time-dependency of natural frequencies of links on Joint and 
Tip responses is taken care of during mathematical modeling. While using assumed modes method, 
the governing equations of the system are obtained to include this effect. Exact boundary 
conditions for the flexible links are obtained while using this method. On the other hand, while 
using finite elements method this effect of time-dependency of natural frequencies is taken care of 
by continuously updating the mass and stiffness matrices of the system. Furthermore, it is also 
easy to take care of boundary conditions during ‘finite element analyses’. Two different types of 
shape functions for a three-node frame element are proposed during the finite element formulation. 
Mass matrix, stiffness matrix and load vector are also derived for the same. Besides that, stiffness 
matrix for a one-dimensional torsional finite element under the influence of bending is also 
provided. Validation of the mathematical model of the Two-Link Flexible manipulator is done 
with the results available in literature and also through experiments. The control of vibrations of 
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flexible links is achieved by using passive damping technique using viscoelastic material and active 
damping technique using piezoceramics. While using passive damping technique, the phenomenon 
of viscoelasticity is modeled using Kelvin-Voigt elements. The active vibration control of flexible 
links is achieved with the help of piezoelectric sensors and actuators applied in segmented fashion 
on the links. Direct velocity feedback is used. A hypothesis is presented for active vibration control 
of torsional vibrations. Results are also presented. Proportional-derivative gains are used during 
active vibration control and it is shown that good results are obtained at low values of control 
gains. To significantly reduce the vibration of flexible links, both the vibration control techniques 
are used together to achieve hybrid damping. Since, a robot is to be used for the performance of 
specified tasks, trajectory planning is must. In the present work, trajectory planning is done using 
both ‘point-to-point’ and ‘continuous path’ trajectories. It is shown that through proper planning 
of trajectory, tip vibrations, initial jerk and joint torque requirements can be reduced significantly. 
While making a robot follow a certain trajectory with minimum deviation from the desired path, 
control techniques are required. Computed-torque control and robust control techniques are used 
for this. Another control technique: Coupled-error dynamics control technique is also used in the 
present work. This is an innovative control technique discovered during the research work. It is 
based upon independent modal space control proposed by Meirovitch. The performance of this 
control technique is compared with computed-torque and robust control schemes in terms of error 
in path followed, effect of uncertainties within the system like mass uncertainty and link flexibility 
and control torque output. It is found that the performance of newly developed control scheme is 
better than computed-torque control and close to robust control.  

Keywords: Flexible manipulator, dynamic analysis, vibration control 

1. Introduction 
Most of the robots used for industrial applications like welding, have two links. These robots are 
not perfectly rigid and hence possess some vibrations due to which the accuracy at the tip gets 
affected. The requirement of high performance in robotics asks for high speed of operation and 
good accuracy. Space applications demand for construction of large space structures by using 
lightweight space robot manipulator. All these requirements make it necessary to consider the 
structural flexibility in robotic arms during design stage.  When compared with conventional rigid 
robots, elastic link manipulators have special potential advantages of higher operational speed and 
greater payload-to-manipulator weight ratio but, the flexibility of the arms leads to deformation 
and vibrations at the tips of the links during the motion. As a consequence, the dynamics behaviour 
becomes extremely complicated. Appearance of oscillations also makes the control problems 
really difficult. The present work is an attempt towards accurate modelling of a Two-Link Flexible 
manipulator as well as implementing different control strategies for the flexible 
manipulator.  Mathematical model is prepared using Lagrangian dynamics to predict the behaviour 
of the manipulator. The links are modelled as Euler-Bernoulli beams. Discretization is done using 
assumed modes method (AMM) with variable frequency equation and Lagrangian-finite elements 
method (FEM) including torsional vibration modes. The control problem is divided into two parts, 
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viz., joint position control and vibration control of links. The joint position control is achieved 
using the actuators at the joints. For vibration control of links, both passive and active damping 
methods are used. Thus, damping is of hybrid nature. Few new proposals have also been made. 

The aim of the research work is to achieve the position control of the end effector of a Two-Link 
Flexible robot using active and passive vibration control methods. The following objectives are 
established to realize this goal. 

1. To prepare a dynamic model of a Two-Link Flexible manipulator considering both flexural 
and torsional vibrations of the links.  

2. To control the position of the tip of the Two-Link Flexible manipulator using passive and 
active vibration control techniques 

3. To perform the trajectory control of the Two-Link Flexible manipulator 

1.1 Organization of the chapter 
The complete work is divided into six sections. The first section gives a brief introduction of the 
present work. The second section provides the literature review of research in the area of flexible 
robotics. It highlights the different design and control concepts used by various researchers in the 
field of flexible robotics. The third section presents mathematical modelling of Two-Link 
Flexible manipulator using the approaches of Lagrangian-AMM and Lagrangian-FEM. In the 
fourth section, the vibration control of flexible links is described using viscoelastic, active and 
hybrid damping methods. In the fifth section, trajectory control of Two-Link Flexible 
manipulator is discussed. The trajectory control is achieved using both continuous path (CP) 
planning and point-to-point (PTP) planning methods. The position control of tip of flexible 
manipulator is achieved using the approaches of computed-torque control (CTC), robust control 
and coupled-error dynamics (CED). A comparison of these different approaches is made. The sixth 
section presents the conclusions and recommendations based on the present work. 

2. Literature review 
A comprehensive literature review was conducted to accomplish the aim and objectives of the 
present work. The literature review includes the survey on work done by various authors in the 
area of flexible robotics.  

2.1 Literature survey on flexible robotics 
The research on flexible manipulators started way back in year 1975 and is still going on. Dwivedy 
and Eberhard [1] have provided a comprehensive literature review on modelling and control of 
flexible manipulators. Table 2.1 highlights the major breakthroughs in this area in a chronological 
fashion.  

Table 2.1: Major breakthroughs in the field of flexible robotics since 1975  
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S. 
No. 

Year Breakthroughs 

1 1975- 
1980 

Starting years of research on flexible robots; Focus on single flexible link; 
Dynamic modelling of flexible robots; Frequency-domain and time-domain 
analyses; Use of Lagrangian approach; Use of feedback control schemes 

2 1981-
1986 

Dynamic modelling using Finite element method; Feedback control of 
vibrations; Inverse and Forward dynamics; Consideration of joint 
flexibility, Development of other control methods- singular perturbation, 
composite control, etc., Consideration of effect of gravity, Use of Newton-
Euler approach in dynamic modelling 

3 1986-
1993 

Use of nonlinear beam theory, Work started on nonlinear controller, 
Implementation of damping in dynamic modeling, Development of control 
strategy using Input shaping, Dynamic modelling of multilink flexible 
manipulators, Consideration of active damping using Linear quadratic 
regulator, Consideration of dynamic boundary conditions, Research on 
stability conditions, Feedforward control for gravity compensation 

4 1994-
2000 

Hybrid force and position control, Adaptive control, Bending-torsion 
vibrations of a single flexible link, Comparison of AMM-FEM, Introduction 
of flexible link with prismatic joint, Stability characteristics considering 
effect of damping and tip mass, Adaptive nonlinear control, Effect of 
payload variations, Effect of geometric nonlinearities, Concept of 
Equivalent rigid-link system for dynamic modeling 

5 2001-
2008 

Nonlinear Lyapunov control, Robustness and stability issues in model based 
control, Use of smart materials for active vibration damping, Fractional 
order controllers, Optimization techniques for controllers for vibration 
reduction, Redundant manipulators, Integral resonant control 

6 2009 
onwards 

Control strategy based on intelligent techniques, Sliding mode control, 
Nonlinear observer, Intelligent control techniques, Robust input shaping, 
Spring-damper based mathematical model, Study of transient response, 
Study of effect of actuator on vibration modes  
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From the literature survey, it was found that different design methods have been used by various 
researchers for preparing the mathematical model of the flexible manipulators. Table 2.2 highlights 
the various design methods. 

Table 2.2: Design methods used by various researchers for modelling the flexible 
manipulators 

S.No. Design Method Researchers 

1 Euler-Bernoulli beam 
theory 

Book et al, 1975 [2]; DU et.al.,1996 [34]; Macchelli et. 
al.,2011 [63];  etc. 

2 Spring-damper system Zimmert and Sawodny, 2010 [56] 

3 Timoshenko beam 
theory 

Naganathan et al, 1986 [10]; Kermani,2010 [57]; 
Loudini,2013 [74] 

4 Lagrangian dynamics 
and Finite Element 
Method 

Sunada et al, 1981 [4]; Usoro et al, 1986 [11]; Bakr and 
Shabana, 1986 [12]; Bayo, 1987 [13]; Chedmail et al, 1991 
[17]; Gaultier et.al.,1992 [21]; Stylianou and Tabarrok, 1994 
[27], [28]; Zebin et.al.,2010 [59]; etc. 

5 Controllable local 
degrees of freedom/ 
Redundant manipulator 

Gao et. al.,2008 [46]; Bian et.al.,2009 [52]; Bian et.al.,2011 
[68], etc.  

6 Wave-based approach O’Connor,2007 [44]; O’Connor et.al.,2009 [54] 

7 Equivalent Rigid Link 
System 

Vidoni et. al.,2013 [72] Gasparetto et. al.,2013 [73] 

8 Lagrangian dynamics 
and Assumed modes 
method 

Oakley et al, 1989 [15]; Luca et.al.,1991 [19]; Li and 
Sankar, 1993 [23]; Mayo et al, 1995 [33]; Lu et.al.,1996 
[35]; Theodore and Ghosal, 1997 [36]; Ata et.al.,2012 [69]; 
Loudini,2013 [73]; etc. 

9 Hamilton’s principle Gaultier et.al.,1992 [21], etc. 
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10  Newton-Euler 
dynamics and FEM 

Nagnathan and Soni, 1986 [10]; Mohan and Saha [75]; etc. 

11 Decoupled Natural 
Orthogonal 
Compliment 

Mohan and Saha [75] 

 
In order to achieve the tip position control of flexible manipulators, various control approaches 
have been used by the researchers. These are- Feed-forward control [56], [63], [71]; Integral 
resonant control [45], [53]; Input shaping [43], [58]; Sliding mode control [51], [55]; Model 
predictive control [66]; PD control [42], [74] and Lyapunov control [22], [39]. From the literature 
review it is observed that the most of the papers deal with planar single link flexible robotic arms 
with small 3D motions. For such links, a linear model is sufficient to describe the dynamic 
characteristics. A lot of research is going on, for non-linear models of flexible arms. The simple 
case of non-linearity in flexible arms is that of a two-link case which have been described in a few 
papers. Furthermore, links having revolute joints have been studied a lot. Most of the authors have 
focussed on the design of controllers according to the accurate dynamic model of the flexible arm. 
Both AMM and FEM have been used to model the flexible arm without compromising the 
accuracy. Some recent researchers have tried to use intelligent control techniques like fuzzy logic 
[59], [74], neural networks [31], [50], [71] and genetic algorithm [59], [74] for designing robust 
controllers as these do not require complicated mathematical modelling. There are two types of 
vibration control schemes: feed-forward and feedback. Trajectory control using forward and 
inverse dynamics methods [6], [7] and effect of gravity [24] on the motion of flexible links have 
been studied in a limited manner.  Few authors recommend the use of nonlinear beam theory [14], 
[25] to account for geometric nonlinearities and a nonlinear controller [9], [31] for effective 
vibration control of flexible manipulators. In order to improve the dynamic performance of flexible 
manipulators, few optimization techniques have also been proposed. But, the most attractive one 
is the use of kinematic redundancy feature for minimizing joint torques and vibration suppression. 
The literature also gives a comparison between AMM and FEM [30], [32] and stability analysis 
of flexible manipulators. The proper placement of actuators made of smart materials on flexible 
links plays a crucial role in damping the vibrations [40]. The control approaches found in the 
literature apply well for the single-link planar case with small elastic displacements. For multi-link 
case, Feed-forward based and other advanced techniques might be suitable. 

2.2 Research gaps identified in the existing knowledge 
Following gaps are found in the literature review presented in this chapter: 

1. Use of internal damping is considered in very few papers. Most of the papers do not 
consider damping during dynamic modelling of the flexible manipulator system. This 
important parameter affecting the response needs to be included. 
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2. Combined bending-torsion vibrations of Two-Link Flexible manipulator become very 
important and needs to be analyzed. In fact, this coupling increases a lot in multi-link 
situation. 

3. There is ample scope of research on optimal placement of actuators according to the mode 
shapes for active damping. Although one paper presents a study on this area for bending 
vibrations, but is silent about the effect of rigid body motion on mode shapes. 

4. Consideration of centrifugal and Coriolis’ forces/ torques and gravity terms need to be 
considered while forming the equation of motion. 

5. The control approaches used by various researchers are suitable for single-link flexible 
planar manipulator only and that too for small elastic displacements. For multi-link flexible 
manipulators, either feed-forward based techniques might be suitable or some different 
technique should be developed/ used. 

6. A robotic arm as a plant is a time-varying system. Use of Adaptive Neural controllers or 
intelligent controllers is very limited. There exists scope for improvement using these.   

7. Stability analysis of intelligent controllers is also another area of research on which hardly 
any literature is available. 

3. Mathematical modelling of Two-Link Flexible manipulator 
The mathematical modelling is done using both Lagrangian dynamics. Discretization is done using 
both AMM and FEM. For the AMM approach, the frequency equation is time-variant and this 
equation is evaluated at every time step. 

3.1 Lagrangian dynamics for flexible manipulator 
An accurate dynamic model of a Two-link Flexible manipulator having two revolute joints 
undergoing both small bending and small torsional deformations was prepared. Fig. 3.1 shows a 
Two-Link Flexible manipulator undergoing both bending and torsional deformations along with 
rigid revolutions at the joints.  
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Fig. 3.1: Dynamic analysis of Two-Link Flexible manipulator undergoing both bending and 
torsional deformations. 

In figure 3.1, plane X-Y is the plane of bending while plane Y-Z is the plane of torsion. X-Y-Z is 
the reference/ ground frame while X1-Y1-Z1 and X2-Y2-Z2 are the local frames attached to Link-1 
and Link-2 respectively. Axis X1 is aligned along the un-deformed neutral axis (N.A.) of Link-1 
while axis X2 is aligned along the un-deformed neutral axis of Link-2. The origins of these local 
frames are located at Joint-1 and Joint-2 respectively. Joint-1 is given a rigid rotation of θ1 and 
Joint-2 is given a rigid rotation of θ2. The position of any point on Link-1 with respect to ground 
is given by: 

p1=T1T1Tr1T+T1r1         (3.1) 

Similarly, the position of any point on Link-2 with respect to ground is given by: 

p2=T1r1+T1T1Tr1T+TAT1T2r2+T1T2T2Tr2T     (3.2) 

In above expressions, 

T1=cos1 −sin1 0  sin1 0  cos1 0  0 1   ;  T2=cos2 −sin2 0  sin2 0  cos2 0  0 1   ; r1=x1 w1x1,t 0  ;  

r1=L1 w1L1,t 0  ; r2=x2 w2x2,t 0  ; TA=cosw1' −sinw1' 0  sinw1' 0  cosw1' 0  0 1   ; 

riT=0 bii bi '  ;  riT=0 bii bi '  ;  g'=0 g 0   ; 

TiT=1 0 0 0 cosi −sini 0 sini cosi   ;  TiT=1 0 0 0 cosi −sini 0 sini cosi   ;    (3.3) 

L1 and L2 = lengths of Link-1and Link-2 respectively, 

θ1 and θ2 = joint rotations (rigid) of Joint-1and Joint-2 respectively, 

x1 and x2 = distances measured along un-deformed Link-1 and Link-2 axes, i.e. X1 and X2 
respectively,  

w1(x1, t) and w2(x2, t) = elastic displacements of Link-1 and Link-2 respectively undergoing 
bending vibrations 

w1'= bending angle at end point of Link-1 = dw1dx1 

{r1} = position coordinates of any point on Link-1 w.r.t to un-deformed Link-1axis i.e., X1 in plane 
X1-Y1 

{r2} = position coordinates of any point on Link-2 w.r.t to un-deformed Link-2 axis i.e., X2 in 
plane X2-Y2 

{r1
*} = position coordinates of end point of Link-1 w.r.t. un-deformed beam-1 axis X1 in plane X1-

Y1 
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{riT} = position coordinates of any point on Link-i in plane Yi-Zi 

ϕi = ϕi(xi, t) = torsional deformation of any point on Link-i 

ϕi
* = ϕi(Li, t) = torsional displacement of end point of Link-i; i represents the link number (i = 1 

and 2) 

The total kinetic energy of the manipulator system is given by: 

K.E.=121A10L1p1´'p1´dx1+122A20L2p2´'p2´dx2    (3.4) 

Total potential energy of the manipulator system is given by: 

P.E.=E1I120L12w12x122dx1+G1J120L11x12dx1+1A10L1g'p1dx1+E2I220L22w22x222dx2+G
2J220L22x22dx2+2A20L2g'p2dx2      (3.5) 

In equation 3.5, J1 and J2 are the polar moment of inertias of Link-1 and Link-2 respectively. The 
joint torques can be obtained using Lagrangian dynamics as follows: 

ddtLq´−Lq=F         (3.6) 

In above expression, L represents Lagrangian of the system and is obtained by taking the difference 
of total kinetic energy and total potential energy of the system; q represents generalized coordinates 
and F represents generalized torque/force.  

q=1 2 w1 w1 w2 w2 1 1 2 2     '    (3.7a) 

F=1 2 0 0 0 0 0 0 0 0     '      (3.7b) 

where, 1 and 2 are the external torques applied at joint-1 and joint-2 respectively. 

3.2 Assumed modes method 
While using assumed modes method (AMM), only bending vibrations of flexible links are 
considered. The term ‘wi (xi, t)’ for any Link-i can be found out by the solution of equation of 
motion of Euler-Bernoulli beam. The equation is as follows. 
2wit2+EiIiiAi4wixi4=fxi,t        (3.8a) 
The transient solution of above equation is given as follows. 
wixi,t=n=1WnxiTnt        (3.8b) 
In equation 3.8, n = number of modes (n = 1, 2, ….∞); Wn(xi) = nth mode shape and is a function 
of distance ‘x’ measured along un-deformed beam axis for Link-i; Tn(t) = time-dependent function 
of nth mode. Since it is impossible to include all the infinite number of modes of the system, hence 
it is modeled with reduced number of modes by assuming some definite number of modes which 
best describe the behavior of the system. Thus, we can rewrite the above equation with reduced 
number of modes say m, as follows: 
wixi,t=n=1mWnxiTnt        (3.9a) 
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In equation 3.9a, m = number of assumed modes. The boundary conditions used for the flexible 
links are time-dependent and given as follows: 

i. pi2t2w20,txi EiIi2wi0,txi2=−J      (3.10a) 
ii. pi2wi0,tt2 EiIi3wi0,txi3=M       (3.10b) 

iii. EiIi2wiLi,txi2=−Jpi2t2wiLi,txi     (3.10c) 
iv. EiIi3wiLi,txi3=Mpi2wiLi,tt2     (3.10d) 

In equations 3.10, the symbols have their usual meanings. The word ‘left’ means the left end of 
link and the word ‘right’ means the right end of the link. The frequency equation (equation 3.11) 
of any Link-i undergoing flexural vibrations is also derived and found to be varying with time.  
 z z coshzcosz zsinz+coszsinh−aibiz4−1=0 cosh coszsinhz−coshzsin−biz3 1+coshzcosz+aiz    

(3.11) 
In equation 3.11, z=Li ; ai=MpiiAiLi ; bi=JpiiAiLi3. The expression for mode shape can be found 
out as follows: 
Wnxi,t=C1ncoshnxi−cosnxi+nsinnxi−sinhnxi  (3.12) 
where,  n=sinhnLi−sinnLi+ainLicoshnLi−cosnLicosnLi+coshnLi+ainLisinhnLi−sinnLi;  n4=iAi
EiIin2 ; ωn = nth  
mode natural angular frequency of the Link-i; C1n = arbitrary normalization constant. The time-
dependent term- ‘Tn(t)’ in equation (3.8b) is given by equation 3.13 as follows. 
Tnt=e−nntAncosdnt+Bnsindnt+1iAibi0tQsinnt−dτ       
      (3.13) 
where, Q=0fxi,Wnxidxi     
ξn = nth mode damping ratio, 
ωn = nth mode natural angular frequency, 
ωdn = nth mode damped angular frequency = n1−n2. 
The complete equation of motion of the Two-Link Flexible manipulator after considering the effect 
of payload is given as follows: 
Mq6X6q´6X1+Hq,q´6X1+Gq6X1+Cq6X6q´6X1+Kq6X6q6X1+Kq6X1=Qt6X1   
     (3.14) 
In equation 3.14, M stands for mass matrix, H stands for Coriolis and centrifugal torque vector, G 
stands for gravity torque vector, C stands for damping and gyroscopic couple matrix, K stands for 
stiffness matrix, K# is the miscellaneous matrix that includes unmodelled dynamics and Q stands 
for torque vector. The vector q in equation 3.14 contains first six variables mentioned in equation 
3.7a. 

3.3 Finite element method 
The finite element method (FEM) is used to model the vibratory motions of the flexible links. This 
involves division of flexible links into some finite number of elements and finding the inertia and 
stiffness matrices that govern the dynamics of the system under consideration. Figure 3.2 shows 
the discretization of flexible links using two Space-frame elements [76]. 
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Fig. 3.2: Dynamics modelling of a Two-Link Flexible manipulator using two Space-frame 
finite elements. 

A ‘space-frame element’ has two nodes with each node having six degrees of freedom: three 
translational (Q6i-5, Q6i-4 and Q6i-3) and three rotational (Q6i-2, Q6i-1 and Q6i) (refer to Fig. 3.2). The 
complete equation of motion of the flexible manipulator is given by equation 3.15a. The symbols 
have their usual meanings. 

Mrr Mrf Mfr Mff n+NXn+Nqr´ qf´ n+NX1+Crr 0 0 Cff n+NXn+Nq´r q´f n+NXn+N+0 0 0 Kff 
n+NXn+Nqr qf n+NXn+N+H 0 n+NX1+G 0 n+NX1=Fr Ff n+NX1    
        (3.15a) 

In equation 3.15a, subscripts- r and f stand for rigid and flexible respectively. N represents the rigid 
degrees of freedom present in the system and n represents the flexible degrees of freedom obtained 
from finite element formulation. For the present case, since there are two flexible links, we have N 
= 2. Hence, Mrr consists of two diagonal elements- M11 and M22. Mrf and Mfr represent the coupling 
between rigid and flexible motions. It is also seen that 

Mfr=Mrf'          (3.15b) 

3.4 Simulation results 
Some typical simulation results based on models described earlier have been presented. Table 3.1 
describes the physical and simulation parameters used for a Two-Link Flexible manipulator used 
by Habib and Korayem [77]. 

Table 3.1: Physical and simulation parameters for Two-Link Flexible manipulator [77]  

Link parameters Value 
Length of links L1 = L2 = 0.5 m 
Width of links b1 = 4 cm; b2 = 5.17 cm 
Thickness of the links t1 = 4 mm; t2 = 1.5 mm 
Flexural rigidity of links EI1 = 14.93 Nm2; EI2 = 1.017 Nm2 
Mass per unit length of links μ1 = 0.504 kg/m; μ2 = 0.2442 kg/m 
Joint 1 torque (Fig. 3.3) Square wave of amplitude 0.5 Nm and time-period 1 s 
Joint 2 torque (Fig. 3.4) Square wave of amplitude 0.1 Nm and time-period 1 s 

 
The simulation results are shown in Fig. 3.5 to Fig. 3.7b. The natural frequencies and the general 
nature of response level matches with the predictions by Habib and Korayem [77]. 
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Fig.3.3: Torque applied at Joint-1 Fig.3.4: Torque applied at Joint-2 

  

Fig.3.5: Comparison of Joint-1 response 
between present work and Habib and 

Korayem’s work [77] 

Fig. 3.6: Comparison of Joint-2 response 
between present work and Habib and 

Korayem’s work [77] 

  

Fig.3.7a: Tip deflection of Link-2 as 
obtained in the present case using AMM 
(No. of modes used = 2; Modal damping 

ratio = 0.02 for each mode) 

Fig.3.7b: Tip deflection of Link-2 as 
obtained in the present case using FEM 

(undamped case)  
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Fig.3.7c: Tip deflection of Link-2 as obtained by Habib [77] 

4. Vibration control of flexible links 
The vibration control of flexible links can be achieved in three ways: by passive viscoelastic 
damping, by active damping using piezoceramics and by hybrid damping. In viscoelastic damping 
method, a viscoelastic material (e.g., rubber) is pasted upon either throughout the flexible link or 
in the form of patches. Tzou and Wan [16] and Alberts et al [20] have used viscoelastic damping 
for controlling the vibrations of a flexible manipulator. In active damping, piezoelectric sensors 
and actuators are used for minimizing the vibrations of flexible links. The sensor-actuator pairs are 
applied in segmented fashion over the flexible link. In the third method of hybrid damping, both 
the viscoelastic damping and active damping are used together. 

4.1 Vibration control using viscoelastic damping 
The vibration control using viscoelastic damping involves the use of some viscoelastic material 
that is pasted over the links. Significant work has been done by Grootenhuis [78], Kapur et al [79], 
Dutt and Roy [80], etc. in the area of vibration control using viscoelastic materials. Adhikari and 
Woodhouse [81] tried to model the damping present within the structures. A prime contributor to 
viscoelastic damping is the shear strain within the viscoelastic material. The physical properties of 
these materials are found out to be frequency-dependent. These materials can be applied on the 
structure either in a constrained or unconstrained manner. Once applied, they become an integral 
part of the structure and provide a fixed damping behaviour. The mathematical modelling of 
viscoelastic damping is done using Kelvin-Voigt elements. For the Kelvin-Voigt element used for 
modelling the phenomenon of viscoelasticity, the stored energy and rate of dissipation in 
differential forms are given as follows [82]: 

Storedenergy,dUe=0A12TdxdA      (4.1a) 

Rateofdissipation,de=0ADϵ2dxdA      (4.1b)  

In equations-4.1, σ = stress within the viscoelastic element of length dx and area dA, ϵ = strain 
within the viscoelastic element, η = dynamic viscosity of the viscoelastic material and A = total 
cross-sectional area of the viscoelastic patch pasted on the flexible link. The mass, stiffness and 
damping matrices for the viscoelastic material were found using FEM. The mass and stiffness 
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matrices thus obtained were assembled with the mass and stiffness matrices of equation 3.15f. 
Damping matrix, ceʹ for the viscoelastic material was derived and is as follows (equation 4.2): 

ce'=c11e c12e c21e c22e          (4.2a)  

c11e=Aele 0 0 0 12Iele3 6Iele2 0 6Iele2 4Iele ; c12e=−Aele 0 0 0 −12Iele3 6Iele2 0 −6Iele2 2Iele 
; 

 c21e=−Aele 0 0 0 −12Iele3 −6Iele2 0 6Iele2 2Iele ; c22e=Aele 0 0 0 12Iele3 −6Iele2 0 −6Iele2 
4Iele  

The damping matrix described in equation 4.2a is for a Plane-frame element. In case of torsion, 
the damping matrix was derived as follows: 

ce'=Jele1 −1 −1 1          (4.2b) 

Using matrices 4.2a and 4.2b, damping matrix Cff for Space-frame element was formulated. In 
equations- 4.2a and 4.2b, Ae = area of cross-section of the element, le = length of the element, Ie = 
area moment of inertia of the element, Je = polar area moment of inertia of the element and η = 
dynamic viscosity of the element. 

4.2 Active vibration control using piezoceramics 
A huge body of literature exists for vibration control of structures using piezoceramics, e.g., 
Cannon and Schmitz [83], Sakawa, Matsuno and Fukushima [84], Goh and Caughey [85], Chen 
et al [86], Sun et al [40], Preumont [88], etc. In active vibration control using piezoceramics, 
sensors and actuators are applied at suitable locations over the flexible links. When the sensor and 
actuator are at the same location, it is referred to as collocated arrangement and when the sensor 
and actuator are at different locations, it is known as non-collocated arrangement. Most of the 
researchers have used the approach of modal sensor and modal actuator [88] for active vibration 
control but in the present work, the vibration control is achieved by using direct feedback of 
velocity variables. Fig. 4.1 shows a smart beam having piezo-sensor and piezo-actuator applied on 
it. FEM is used to model the smart beam. 
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Fig.4.1: Schematic diagram for active vibration control of a smart beam/ link. The piezo-
actuator is modelled as a source of time-dependent uniformly distributed load, p(t). KG is 

feedback gain. 

The time-dependent uniformly distributed load, p(t) is added to the load vector Ff given by 
equation 3.15f. This is responsible for vibration damping of the flexible links. The voltage 
generated by piezo-sensor (considering it as a current amplifier) is given as follows: 

vst=−RfEphd31abw´''bpxdx       (4.3) 

where, Rf  = piezo-resistance, w represents the deflection of any point on the beam and wʹ represents 
the slope at that point, bp(x) = width of the piezo-sensor, a and b represent the initial and final 
coordinates of the points on the beam/link between which the piezo-sensor is located. These 
coordinates are measured along the beam axis, such that, ‘(b-a)’ represents the length of the piezo-
sensor. Taking bpʹʹ(x) = constant, the voltage generated by the piezo-sensor will be expressed as 
follows. 

vst=−RfEphd31.bpxw´'b−w´'a−bp'x.w´b−w´a  (4.3b) 

where, w´'b= rate of change of slope at point b, w´'a = rate of change of slope w.r.t. time at point 
a on the beam, w´b = rate of change of deflection at point b and w´a = rate of change of deflection 
at point a on the beam. The equation of motion for the beam with piezo-actuator is given by 
equation 4.4 as follows. 

mw´+EIw''''=−Epd31vatbp''xh      (4.4) 

In equation 4.4, m = mass per unit length of the beam, EI = flexural rigidity of the beam, Ep = 
Young’s modulus of the piezo-ceramic, h = thickness of the beam, w = deflection of the beam, va 
= voltage applied at the actuator and d31 = piezoelectric constant. Equation 4.4 is valid only when 
the thickness of the piezo-ceramic is negligible in comparison to the beam thickness. Fig. 4.2 
shows the relative placement of sensors and actuators on the flexible links of the Two-Link Flexible 
manipulator. 
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Fig. 4.2: Diagram showing the relative placements of sensors and actuators on the flexible 
links of the Two-Link Flexible manipulator. (In the figure, S1 = Sensor on Link-1; S2 = 

Sensor on Link-2; A1 = Actuator on Link-1 and A2 = Actuator on Link-2.) 

As described before, we can have collocated and non-collocated arrangement for active vibration 
control of the flexible links. In Fig. 4.2, collocated arrangement of sensors and actuators are shown. 

4.2.1 Use of piezoceramics for controlling torsional vibrations 
In this section, mathematical models for piezo-sensor and piezo-actuator in torsion will be 
presented based upon the theory of piezoactuation provided by Preumont [88]. Using torsion 
equation we can write: 

=TrJ and T=GJx=GJϕ'         (4.5a) 

Thus, =Gr'=Gγ         (4.5b) 

In above equations,  = shear stress, T = twisting torque, J = polar moment of inertia, G = modulus 
of rigidity,  = twist,  = shear strain and r = radius (refer to Fig. 4.3). Taking the torsional piezo-
sensor as current amplifier, the voltage, v generated by it can be expressed as: 

v=Rd24Gprabbpx´'x.dx       (4.6a) 

where, R = resistance of piezo-sensor, d24 = piezoelectric constant, Gp = modulus of rigidity of 
piezo-sensor and bp = width of piezo-sensor. If bp(x) = bp = constant then, 

v=Rd24Gprbp´'b−´'a       (4.6b) 

For torsional piezo-actuator we can write, 

T=2E4423−d24vbpE44r.dA=GJ'−d24vE44bpr.dA    (4.7) 
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where, E44 = Young’s modulus of piezo-actuator, 23 = shear strain in piezo-actuator and A = area 
of cross-section of piezo-actuator. 

 

Fig.4.3: Development of mathematical model of torsional piezo-actuator 

From Fig. 4.3 we can write,  

r.dA=A0.5h+hp2+0.25bp2       (4.8) 

where, A = hpLp, h = beam thickness, hp = thickness of piezo-actuator and Lp = length of piezo-
actuator. Using above equation, we can write: 

T=GJ'−d24vE44hpLpbp.bp2.1+0.5h+hp0.5bp212     (4.9)  

For (0.5h+hp) << bp, 0.5h+hp0.5bp21 

So, T=GJ'−12d24vE44hpLp       (4.10) 

Now, inertia torque is represented as:  Im´=−T  

Therefore we get, 

Im´+GJ'=12d24vE44hpLp       (4.11)  

where, Im = mass moment of inertia of beam. It is known that shear stress is always complimentary. 
So, in order to control the torsional vibrations, two piezo-actuators should be attached on the 
opposite faces of the beam at the same location. Thus, above equation will get modified as follows. 

 Im´+GJ'=d24vE44hpLp        (4.12) 
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4.3 Simulation results on vibration damping of flexible links 
In this section, typical simulation results using viscoelastic damping, active damping and hybrid 
damping are discussed. Table 4.1 enlists the physical and simulation parameters used during 
simulation.  

Table 4.1: Physical and simulation parameters for vibration damping of flexible links of 
Two-Link Flexible manipulator 

Link parameter Value 
Length of links L1 = L2 = 0.5 m 
Width of links b1 = 4 cm; b2 = 5.17 cm 
Thickness of links t1 = 4 mm; t2 = 1.5 mm 
Flexural rigidity of links EI1 = 14.93 Nm2; EI2 = 1.017 Nm2 
Density of links 7850 kg/m3 
Joint 1 torque, tau1 A square wave of amplitude 0.5 Nm and 

frequency 
a. 100 Hz for Fig. 4.4, Fig. 4.6 and Fig. 4.7 
b. 50 Hz for Fig. 4.5 and Fig. 4.8 

Joint 2 torque, tau2 tau1 + A square wave of amplitude 0.1 Nm and 
frequency  

a. 100 Hz for Fig. 4.4, Fig. 4.6 and Fig. 4.7 
b. 50 Hz for Fig. 4.5 and Fig. 4.8 

Type of finite element used Frame element/ Space-frame element 
Dynamic viscosity of viscoelastic material 
(rubber) 

1.8 Ns/m2 

Density of viscoelastic material (rubber) 1200 kg/m3 
Physical parameters of piezoceramic Rf = 1; Ep = E44 = 1; d31 = d44 = 1 

 
Simulation results are shown in Fig. 4.4 to Fig. 4.8. In figure 4.4, the undamped response and 
viscoelastically damped response of the tip of second flexible link are compared with each other.  
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Fig. 4.4: Comparison of tip slope rates (rate of change of slope) of tip of second flexible link 
of Two-Link Flexible manipulator between viscoelastically damped and undamped cases 

In Fig. 4.4, the rates of change of slope of tip of second flexible link for damped and undamped 
cases are compared. From the figure, it is clear that due to the presence of viscoelastic damping, 
the amplitude of vibration decreases. In Fig. 4.5, comparison of tip responses is shown for 
collocated and non-collocated arrangements. Descriptions about collocated and non-collocated 
control are already found within the literature [88].  

 

Fig. 4.5: Comparison of slopes of tip of second flexible link of Two-Link Flexible 
manipulator for collocated and non-collocated sensor-actuator pairs. 

In Fig. 4.5, the slope rates of tip of second flexible link are compared at different arrangements of 
sensor-actuator pair. The values of proportional (Kp) and derivative (Kv) gains are taken as 4 for 
the both links. It is observed positional accuracy of collocated arrangement is the best. In figure 
4.6, a comparison is done between the tip responses obtained by active damping and hybrid 
damping. During hybrid damping, both viscoelastic damping and active damping are used. In order 
to introduce viscoelastic damping, one thousand Kelvin-Voigt (K-V) elements are used.  
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Fig. 4.6: Comparison of bending deflections of tip of second flexible link of Two-Link 
Flexible manipulator between active damping control and hybrid damping control. 

From Fig. 4.6, it can be inferred that hybrid damping results in better vibration control. The 
positional accuracy described by zero vibration of the tips can be further increased by increasing 
the proportional gains- Kp. Fig. 4.7 shows the torsional deformations of tip of second flexible link 
under actively damped case and undamped case. Space-frame elements were used for obtaining 
this result. 

 

Fig. 4.7: Comparison of torsional deformations of tip of second flexible link of Two-Link 
Flexible manipulator between active damping control case and undamped case. 

From Fig. 4.7, it can be observed that, the response of ‘actively damped case’ is closer to the zero 
line of reference than the response of ‘undamped case’. The effect of vibrations on positional 
accuracy of tip of Two-Link Flexible manipulator is shown in Fig. 4.8. 
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Fig. 4.8: Effect of vibration on positional accuracy of tip of Two-Link Flexible manipulator 

In Fig. 4.8, the blue-coloured curve corresponds to the tip position of flexible manipulator when 
only bending vibration is considered. It can be seen that the curve lies in X-Y plane. The red-
coloured curve corresponds to the tip position of flexible manipulator when both bending and 
torsional vibrations are considered. The curve does not remain in plain and the positional accuracy 
of the tip is also deteriorated. 

5. Trajectory control of Two-Link Flexible manipulator 
In this chapter, the position of tip of the flexible manipulator will be controlled by controlling the 
torque provided by the motors at the joints. For this purpose, it is required to perform the trajectory 
planning. A flexible manipulator exhibits two kinds of motion- ‘rigid motion’ and ‘elastic motion’. 
Trajectory planning makes use of the ‘rigid motion’. It can be done in two ways- continuous path 
(CP) planning and point-to-point (PTP) path planning. Trajectory can be defined either by using 
Joint-space trajectory or by using Cartesian-space trajectory. This trajectory planning forms the 
basis of manipulator control problem [90] which is stated as: 

To find the joint actuator torques required to produce a planned trajectory, i.e., location, velocity 
and acceleration, for the entire work cycle such that planned task is performed as specified. 

Even though the trajectory is planned properly, still there will be positional inaccuracy at the tip 
of the flexible manipulator. This is due to the ‘elastic motion’ exhibited by the flexible links. In the 
present case, the ‘elastic motion’ is modelled as a non-linearity and its effect is minimized by using 
three control techniques: computed torque control (CTC) [91], robust control [91] and a newly 
developed scheme called as coupled-error dynamics (CED).  
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5.1 Coupled-error dynamics 
In this technique developed, the dynamics of the system is described in terms of joint-angle errors. 
Fig. 5.1 shows a Two-Link Rigid manipulator having a payload at its end. The dynamics equation 
of such a manipulator is given as follows: 

 1 2 =M11 M12 M21 M22 ´1 ´2 +N1 N2 +G1 G2       (5.1) 

where, τ1 and τ2 are joint torques, θ1 and θ2 are joint angles and 

M11=m1+m2L12+m2L22+2m2L1L2cos2+Ih1+MpL12+L22+2L1L2cos2+mh2L12  

M12=M21=m2L22+m2L1L2cos2+MpL1L2cos2+L22   

M22=m2L22+Ih2+MpL22         

N1=−m2L1L22´1´2+´22sin2+MpL1L22´1´2−´22sin2  

N2=m2L1L2´12sin2−2MpL1L2sin2.´1´2       

G1=m1+mh2+m2+MpgL1cos1+m2+MpgL2cos1+2  

G2=m2+MpgL2cos1+2        

  

Fig.5.1: A Two-Link Rigid serial robot having two Revolute Joints in X-Y plane. 
In equation 1, m1 and m2 are masses of Link-1 and Link-2 respectively, L1 and L2 are lengths of 
Link-1 and Link-2 respectively, Ih1 and Ih2 are joint/hub mass moment of inertias at Joint-1 and 
Joint-2 respectively, mh2 is the mass of hub of Joint-2 and Mp is mass of payload attached at the 
end of Link 2, i.e., at the end-effector. It can be seen from equation 5.1 that the mass matrix is 
coupled and depends upon configuration of the manipulator. This makes the control problem 
difficult. Now, a robot is designed to move along a desired trajectory for performing an assigned 
task. Thus, the desired joint angles are: θ1d for Joint 1 and θ2d for Joint 2. The joint errors will be 
defined as follows. 

je=jd−j          (5.2) 
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where, j represents joint number (=1, 2), subscript- ‘e’ stands for ‘error’ and subscript- ‘d’ stands 
for ‘desired’. After substituting for θ1, θ2 and their derivatives from equation 5.2 into equation 5.1 
and performing necessary mathematical operations, following equations are obtained:    
1d−1 2d−2 =Me11 Me12 Me21 Me22 ´1e ´2e −Ce11 Ce12 Ce21 Ce22 ´1e ´2e −G11e G12e G21e 
G22e 1e 2e   (5.3a)  

Defining the control torque as: 

 u==Kv´e+Kpe          (5.4) 

for each joint of the manipulator and substituting in eq. (5.3a), we get  

Me´e+Kv−Ce´e+Kp−Gee=d      (5.3b) 

In eq. (5.3b), the matrices- Me, Ce and Ge are time-varying and also involve non-linear terms. It 
refers to the case of coupled control [92]. The values of gains- Kv and Kp must lie within certain 
range so that the controller performance may not deteriorate even though the coefficients in (5.3b) 
change with time. The ranges for Kv and Kp can be found out by designing the controller for 
minimum and maximum values of d and ´d. After applying the concept of independent modal-
space control (IMSC) [92] on equation 5.3b, the relationship between Kv and Kp for critically 
damped response of the controller can be found out as follows: 
Kv−Ce=1Me+2Kp−Ge       (5.5) 
where, 1 and 2 are some constants that depend upon the inertial and elastic properties of the 
manipulator system. In case of CTC, each joint is controlled separately and the relationship 
between controller gains is given as follows: 
Kv=2Kp          (5.6) 

5.2 Simulation results for trajectory control 
Performances of three types of controllers based on CTC, robust control and CED are compared 
through the simulation results. The control task is that the tip of the flexible manipulator should 
trace a straight line in X-Y plane described below: 

y=0.268x+0.5         (5.7) 

The joints of the manipulator follow a five-degree polynomial trajectory. The simulation results 
are presented below. Same values of controller gains were used during simulation for comparing 
the performances of the three controllers. Fig. 5.2 compares between the tip positions of the flexible 
manipulator as obtained by using controller based upon CTC scheme and CED scheme. Fig. 5.3 
compares between the tip positions of the flexible manipulator as obtained by using controller 
based upon robust control scheme and CED scheme. The control torque requirement at Joint 1 is 
shown and compared with each other for the three controllers in Fig. 5.4. 

Fig. 5.2: Comparison between the tip positions of flexible manipulator as obtained by using 
CTC and CED for same PD gains 
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Fig. 5.3: Comparison between the tip positions of flexible manipulator as obtained by using 
robust control and CED for same PD gains 

Fig. 5.4: Comparison of control torque requirements at Joint 1 as provided by controller 
based upon CTC, robust control and CED for same PD gains (The control torque in ‘CED’ 

case lies between -0.7 units to 0.1 units.) 

After looking at Fig. 5.2 and Fig. 5.3, it can be concluded that the performance of CED-based 
controller lies between that of the CTC and the robust controller for same values of controller (PD) 
gains. When Fig. 5.4 is viewed, it can be inferred that the CED-based controller gives the output 
comparable to the other controllers at minimum control torque. 

6. Conclusions and recommendations 
In this chapter, conclusions based upon the present work are made and new proposals are 
suggested. 

6.1 Conclusions 
The objectives of dynamics modelling, vibration control and trajectory control of a Two-Link 
Flexible robot have been accomplished in this work. While preparing the dynamic model, internal 
damping using the phenomenon of viscoelasticity has been considered. Combined bending and 
torsional vibrations of the flexible links were considered during mathematical modelling. Both 
AMM and FEM were used for mathematical modelling. The boundary conditions are easily 
addressed by using the FEM approach. In the present case, the differential equations obtained as a 
result of finite element (FE) formulation were solved directly to find out the responses at each 
node. The uniqueness lies in solving the equations of rigid and elastic motions for the flexible links 
simultaneously using a single computer program. During mathematical modelling, it was observed 
that the Two-Link Flexible manipulator exhibits time-varying boundary conditions. As a result, 
the frequency equation and hence the mode shapes also become time-dependent. This time-
variance is due to the change in variables representing ‘rigid motion’ of the flexible manipulator 
with time. The non-linear effects due to the presence of centrifugal and Coriolis terms and gravity 
are also included in the formulation. 

 The process of active vibration control is based on direct feedback control using PD 
controller. The effect of relative position of sensors and actuators located on flexible links has been 
observed. It was found that collocated arrangement provides better positional accuracy than the 
non-collocated arrangement. The latter may provide better response when there is high internal 
damping within the system. The trajectory control of the flexible manipulator was achieved using 
three techniques, viz. CTC, robust control and CED. Out of these, the first two are well established 
techniques while the third one was developed during the research work. The mathematical model 
for active control of torsional vibrations has already been described.  
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6.2 Future recommendations 
Literature provides three methods of mathematical modelling of a mechanical system- Lagrangian 
dynamics, Newton-Euler approach and Kane’s method. The computational efficiencies of the 
computer programs based on these three methods can be checked. The conventional approach of 
active vibration control makes use of modal sensors and actuators. Literature describes the control 
problems associated with these, like residual modes and spillover effects. In the present work, 
direct feedback is used and the concept of modal sensor and actuator is not used. There is need of 
finding the control problems associated with this approach. Use of intelligent controllers and 
stability analysis of various controllers need to be done. 
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