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ABSTRACT 
The incidence of video forgery on the internet has increased in recent years, corresponding with 
the spread of malicious software, which has aided the seamless uploading, downloading, and 
sharing of various digital objects such as audio, photos, and videos. Video Editor and Adobe 
Photoshop, multimedia software extensively used for modifying and tampering with media files, 
are prominent among these manipulative tools. Concurrently, video sequence manipulation, 
involving the addition or deletion of objects within frames, has evolved as a common kind of 
malicious video counterfeiting. This study goes into the world of video forgery detection, focusing 
on passive blind techniques and addressing three types of forgery: clone forgery, source camera 
identification, and splice forgery. 
Keywords: forgery, video, machine learning, active passive approaches 
 
INTRODUCTION 
The widespread availability of digital video and image editing software has created a huge 
difficulty in the field of multimedia content authentication. The current landscape of manipulation 
techniques, combined with the dynamic evolution of multimedia technology, has lowered the 
threshold for even the most inexperienced user to effortlessly remove objects from video 
sequences, incorporate elements from disparate video sources, or insert objects generated by 
graphic design software. As a result, differentiating between an original, unedited video and one 
that has been tampered with has become a difficult task. This complexity arises from the multitude 
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of forgery methods accessible to the general public, resulting in a substantial hurdle in the realm 
of video processing [1, 2]. 
 
In recent times, the domain of blind digital video forgery detection has emerged as a pivotal avenue 
for establishing the credibility of digital video content. This subject has garnered notable attention 
within the research community, owing to its significance and relevance. 
 
Based on their methodology, video forgery is divided into two categories: active approaches and 
passive-blind approaches. The former category includes approaches involving the inclusion of 
invisible data prior to identification, which necessitates the pre-embedding of features such as 
watermarks, fingerprints, or digital signatures into images. These elements are subsequently 
detected through integrity checks of the pre-embedded data [3-6]. Conversely, the latter approach, 
more suitable for scenarios involving video, photo images, or audio, holds particular relevance [7]. 
 
A broader taxonomy of passive-blind techniques includes three primary categories [8, 9]: splicing, 
source identification, and copy-move forgery detection. These techniques prove valuable for 
detecting various forms of digital video manipulation, including instances of double compression, 
such as those seen in MPEG or H.264 formats. Evidently, a plethora of research has been dedicated 
to detecting digital video tampering, a testament to the significance of these methods [10-15]. 
 
These passive approaches effectively address conventional forgery operations, offering a valuable 
toolset for determining the authenticity of digital videos. They leverage techniques like video 
object detection, video double compression analysis, identification of duplicated regions within 
video frames, as well as frame-based tampering detection and identification of images subjected 
to double JPEG compression. The multifaceted nature of these methods collectively contributes to 
enhancing the accuracy and reliability of determining the legitimacy of digital video content. 
 

 
Figure 1: Forged and original Image Sequence 

 
Figure 1 illustrates the utilization of a replicated sequence of video frames to obscure or imitate a 
particular event [71]. To elucidate, consider a scenario where an individual is captured in a video 
via a camera. If a segment of the video encompassing the some parts  intentionally added, an 
alternate sub-sequence frame can be duplicated and repositioned to mask the excised portion. 
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Detecting such a form of video forgery proves to be an intricate endeavour, particularly if the copy-
move process is meticulously executed. This underscores the critical significance of video forgery 
detection, as it plays a pivotal role in unveiling instances where the visual integrity of video content 
has been compromised [16, 17]. 
 
This study conducts a comprehensive review of existing literature pertaining to video forgery 
detection, with a specific emphasis on passive blind approaches. The primary focus lies in 
exploring the detection methodologies that effectively identify instances of cloning forgery, source 
camera identification, and splice forgery. Notably, this study presents a novel video authentication 
system capable of detecting and characterising region and frame duplication as significant markers 
of video fabrication. Furthermore, this technique seeks to uncover and analyse the underlying 
elements that influence video forgery perpetration. 
To achieve these objectives, the study adopts a meticulous video processing technique, involving 
the segmentation of videos into distinct sub-blocks. Subsequently, geometric features inherent to 
each macro-block are extracted and analyzed. This meticulous feature extraction process 
significantly contributes to the heightened precision and accuracy of forgery detection. 
Furthermore, the study undertakes a systematic investigation into optimizing the sorting algorithm, 
resulting in a streamlined computational process. This optimization takes into account crucial 
factors, including the number of blocks and the quantity of extracted features. 
 
FRAMEWORK OVERVIEW IN VIDEO FORGERY DETECTION 

 
Figure 2: General Detection Method 

 
Digital Image Forensics vs. Video Forgery Detection 
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While several studies [40-47] have been conducted on digital image forensics, research on digital 
video forgery detection has been very limited. Copy-move forgery appears as a popular tampering 
technique in the domain of video forgery. Detecting forged regions or frames in this scenario 
presents a distinct problem due to potential differences in the tampered content's size and 
compression rate. Methods for detecting video forgeries largely rely on distinguishing both the 
spatial and temporal features of copy-move manipulation. 
 
General Detection Methodology 
Figure 2 depicts a basic detection strategy that includes crucial stages such as frame extraction 
from the source video, feature extraction, overlapping block matching, and the final determination 
of the presence of forgery. This adaptable method supports numerous extraction techniques such 
as DCT, DWT, and PCA while also supporting the use of various matching methods such as K-
SVD tree and radix sort [39]. 
Another significant research, Xiaoling [35], using Compressing Sensing Theory to present a 
unique approach that combines content authentication and tamper detection utilising a semi-fragile 
watermark hidden inside DCT coefficients. This technology was used to MPEG-2 compressed 
films, enabling for content authentication and tamper detection within inner I-frames and P-frames. 
The results showed that the Semi-fragile Watermarking method performed exceptionally well in 
terms of effectiveness and accuracy. 
Wang et al. [36] developed a strategy to detect frame duplication using both temporal and spatial 
correlation in a related study. However, when working with small forged sections, this approach 
encountered accuracy difficulties. Another study [37] devised a solution customised to two specific 
attack types: 1) spatial (pixel) copy-move attack identified by Histogram of Oriented Gradients 
(HOG), and 2) temporal copy-move attack detected via MPEG-2 GOP structure. 
Wang and Farid [38] also presented a separate video tampering detection approach based on the 
detection of duplicate frames. This technique takes advantage of the presence of unique static and 
temporal statistical abnormalities in a sequence of doubly compressed MPEG video frames. These 
irregularities serve as indicators of tampering, similar to the original MPEG compression 
approach, in which frames are edited and saved as a twice compressed MPEG movie. 
Hsu et al. [40] presented a video splicing method that uses noise residue correlation to identify 
forged frame patches within a film. The basic concept of this approach is the modification of noise 
residue correlation caused by tampered frames, which distinguishes them from untampered parts. 
Despite its vulnerability to noise quantization, experimental results revealed the dependability of 
noise correlation as a feature, particularly in high-quality movies. However, noise residue 
extraction is a complex operation that involves both spatial (intra-frame) and temporal (inter-
frame) forgery detection. In the former, entire videos are utilised as a reference, while inter-frame 
frames are used to detect tampering. 
A unique technique based on Tamura texture features and algorithms was also proposed. The 
method computes disparities between the Tamura texture feature vector and adjacent vector 
matrices using the vector matrix of the movie obtained from video frame extraction. If the 



China Petroleum Processing and Petrochemical Technology 
 

Catalyst Research   Volume 23, Issue 2, September 2023   Pp. 1411-1426 

 
1415 DOI: 10.5281/zenodo.7778371 

disparities are less than a certain threshold, their distances are compared to the threshold. To 
determine the location of copy-move sequences, pairs of serial numbers that exceed the distance 
threshold are logged. 
Davarzani et al. [41] presented an efficient technique for copy-move forgery detection using 
Multiresolution Local Binary Patterns (MLBP) in another related paper. This approach performs 
well even when subjected to rotation, scaling, JPEG compression, blurring, and noise addition. To 
discover duplicated parts and retain robustness against a range of changes, the image is separated 
into blocks, each of which is exposed to LBP and the RANSAC algorithm. 
 

Table 1: Method and approach with key finding 

Reference Detection Method and Approach Key Findings and Contributions 

[35] 
Semi-fragile Watermarking with 
Compressing Sensing Theory 

Authentication and tamper detection using DCT-
based watermarking in MPEG-2 compressed 
videos 

[36] 
Temporal and Spatial Correlation 
for Frames Duplication 

Detection of frames duplication with temporal 
and 
spatial correlation; limitations in small forged 
areas 

[37] 

HOG for Spatial Copy-Move, 
Exploitation of MPEG-2 
GOP Structure 

Detection of spatial and temporal copy-move 
attacks  using HOG and MPEG-2 GOP structure 

[38] 
Duplicate Frame Detection using 
Doubly Compressed 

Detection of duplicate frames using doubly 
compressed 

 MPEG Video Frames Sequence MPEG video frames sequence 

[39] 
Noise Correlation for Forged 
Frame Detection 

Detection of tampered frame regions based on 
noise residue correlation 

[40] 
Tamura Texture Features for Copy-
Move Detection 

Copy-move detection using Tamura texture 
features 

[41] 
Multiresolution Local Binary 
Patterns for Copy-Move 

Efficient copy-move detection using MLBP and 
RANSAC 

 Forgery Detection algorithm across various manipulations 

 
TYPES OF FORGERY 
Active Approaches to Video Tampering Detection: 
Based on the usage of watermarks and digital signatures, active video forgery detection systems 
are divided into two categories [44]. To identify faked films, these approaches use fragile and 
semi-fragile watermarks [45]. Fragile watermarking includes embedding invisible information into 
the video that changes when the video content is changed, allowing forging detection. Semi-fragile 
watermarking is less sensitive to modifications, allowing for minor changes while detecting large 
tampering [46]. 
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Both solutions necessitate the insertion of a watermark during video recording, making them 
reliant on algorithmic and hardware implementations that may not be generally supported. When 
tampering happens prior to watermark placement, there is also a constraint. 
 
Passive Approaches to Video Tampering Detection: 
Passive solutions for detecting video tampering do not rely on embedded information in videos 
such as digital watermarks or signatures. These approaches make use of imperceptible traces left 
by tampering within video frames, which may or may not be visible to the naked eye. While these 
changes are disguised, they have an effect on the statistical properties of the video frames. These 
statistical changes cause inconsistencies in many properties such as noise, residues, texture, and 
optical flow (OF) anomalies. Passive techniques use these disparities to discover anomalies. 
 
Furthermore, forensic professionals must base their judgements on the present seen video when a 
video requires forensic examination and the source video is unavailable. Active approaches are 
impractical in such instances, hence passive techniques are the preferable option. 
 
Review of Spatial (Intra-Frame) Video Tampering Detection Techniques 
Deep learning, a branch of machine learning based on neural networks, provides a reliable method 
for extracting problem-specific, complicated, high-dimensional characteristics useful for 
classification tasks. Several deep learning algorithms have been utilised in the context of spatial 
video forgery detection, with promising results. 
 
Zampoglou et al. [47] used pre-trained ResNet and GoogLeNet networks, as well as Q4 and Cobalt 
forensic filters, to detect spatial video counterfeiting. The accuracy was 85.09% and the mean 
average precision was 93.69% on the Dev1 and Dev2 datasets. 
 
Convolutional Neural Networks (CNNs) were used by Yao et al. [48] to extract complicated high-
dimensional features, and successive frame differences were used to reduce temporal redundancy. 
A max pooling layer was added to reduce computational complexity, and a high-pass filter layer 
improved residual identification post-tampering. Their method yielded impressive accuracy 
metrics such as 89.90% forged frame accuracy (FFACC), 98.45% pristine frame accuracy 
(PFACC), and 94.07% F1 score. 
 
Kono et al. [49] used their generated Inpainting-CDnet2014 and Modification Database datasets 
to combine a CNN and a recurrent neural network for video forgery detection, yielding an area 
under curve (AUC) of 0.977 and an equal error rate (EER) of 0.061. 
For detection, Avino et al. [50] investigated auto-encoders and recurrent neural networks. The 
receiver operating curve (ROC) demonstrated the method's performance with a limited set of 10 
videos. 
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Kaur et al. [51] proposed a Deep Convolutional Neural Network (DCNN)-based technique for 
inter-frame forgery detection. The approach displays real application potential by reaching 98% 
accuracy on REWIND and GRIP datasets. 
 
Aditi et al. [52] developed a spatiotemporal video forgery detection and localization approach 
using CNNs, successfully distinguishing tampered and authentic frames while training with 
motion residuals. On the SYSU-OBJFORG dataset, the approach produced equivalent findings. 
While these algorithms produce high-dimensional features with excellent accuracy, a recurring 
theme emerges: the requirement for cross-validation and larger data validation to ensure 
generalisation and robustness. 

Reference Method and Approach Dataset and Evaluation Achieved Metrics 

[47] 
ResNet and GoogLeNet with 
Forensic Filters Dev1 and Dev2 datasets 

Accuracy: 85.09%, Mean AP: 
93.69% 

[48] CNN for Feature Extraction 
100 authentic, 100 
forged videos 

FFACC: 89.90%, PFACC: 
98.45%, F1: 94.07% 

[49] 
CNN and Recurrent Neural 
Network Combination 

Inpainting-CDnet2014, 
Modification DB AUC: 0.977, EER: 0.061 

[50] 
Auto-encoders and Recurrent 
Neural Network 

Limited experiments on 
10 videos 

ROC-based performance 
assessment 

[51] 
Deep Convolutional Neural 
Network (DCNN) 

REWIND and GRIP 
datasets 

Accuracy: 98%, Potential for 
application 

[52] 
Spatiotemporal Detection based 
on CNN SYSU-OBJFORG dataset 

Comparable results, need for 
cross-validation 

 
Exploring Approaches Based on Pixel and Texture Features: 
The pixel, a fundamental unit, is at the heart of every image frame. RGB (Red-Green-Blue), 
YCbCr (with luminance Y and chroma components Cb and Cr), HSI (Hue-Saturation-Intensity), 
and CMY (Cyan-Magenta-Yellow) are several colour representation formats used in images. 
These models allow for the mathematical derivation of several properties such as colour, gamma, 
intensity, and contrast. Multiple pixel-based features, such as HOG (Histogram of Oriented 
Gradients) and LBP (Local Binary Pattern), can be computed using these colour models to detect 
passive forgery [52]. 
 
Subramanyam et al. [41] investigated compression characteristics and HOG to detect spatial 
counterfeiting. 6000 frames from 15 different videos were analysed for spatial manipulation using 
their methods. In parallel, 150 GOPs (Groups of Pictures) of 12 frames each were used to detect 
temporal forgeries. The original movie was compressed at 9 Mbps using the MPEG-2 video codec 
and then spatially manipulated by copying and pasting sections of varied dimensions (40 40, 60 
60, and 80 80 pixels) within and across frames. The detection accuracy (DA) for 40 40, 60 60, and 
80 80 pixels was notable, reaching 80%, 94%, and 89%, respectively. While this technique 
demonstrated improved spatial forgery detection accuracy, it is important to note that the model 
was trained and tested on a relatively limited dataset. Importantly, this method has drawbacks, 
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such as failing to detect forgery when post-processing procedures such as scale and rotation were 
applied to tampered regions, as well as failing to localise the fabricated regions. 
 
Meanwhile, Al-Sanjary et al. [107] investigated optical flow inconsistency to detect and localise 
instances of copy-move forgeries. In this study, nine movies were used to evaluate the technique's 
performance, yielding a 96% accuracy rate. However, it should be noted that the method's 
efficiency decreases when used to high-resolution videos, offering a constraint. 
 

Method 
Key Concepts and 
Features Evaluation 

Achieved 
Metrics Limitations 

Pixel-based and 

Various color models 
(e.g., RGB, YCbCr, HSI, 
CMY), 

6000 frames from 
15 videos for 

DA: 40x40 pixels 
- 80%, 

Detection limitations 
after post-processing 
like 

Texture Features 

Derived features (HOG, 
LBP), Subramanyam et 
al. [41] 

spatial forgery, 150 
GOPs of 12 frames 
each for temporal 
forgery 

60x60 pixels - 
94%, 80x80 
pixels - 89% 

scaling and rotation. 
Inability to localize 
forged regions. 

Inconsistency  accuracy achieved  videos. 

 
Review of Temporal (Inter-Frame) Video Tampering Detection Techniques 
Optical flow, which calculates apparent velocities of brightness pattern movement, and motion 
residuals, which calculate motion in videos, are both critical techniques. Shanableh et al. [13] 
detected tampering using SVM classifiers and characteristics such as prediction residuals, intra-
coded macro-blocks, and quantization scales. Chao et al. [31] used optical flow fluctuations to 
detect frame insertion and deletion, however they did not do varied compression testing. 
 
Feng et al. [53] proposed a motion residuals-based approach for detecting frame deletion sites, 
which achieved successful localization but did not take compression ratios into account. Feng et 
al. [54] created fluctuation characteristics based on motion residuals that detect frame deletion with 
high accuracy in both speedy and slow-motion films. Kingra et al. [55] suggested a hybrid method 
integrating optical flow and prediction residuals that performed well for detection and localization 
of frame tampering but struggled with high illumination. 
 
Jia et al. [56] and Joshi et al. [57] classified authentic and counterfeit films using optical flow for 
detecting duplicated frames and frame prediction error, respectively. While Joshi et al. achieved 
an accuracy of 87.5%, its performance is limited to movies less than 7 seconds in length. The 
summarised approaches show a range of strengths and limitations, from effective tamper detection 
to issues with certain video qualities and circumstances. 
 
RESEARCH CHALLENGE 
Dataset Every recognition system's success is dependent on its training, testing, and assessment 
methods, which are all dependent on the dataset employed. During these stages, the dataset is 
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critical to guaranteeing the proper operation of any proposed method. Existing video forgeries 
datasets, however, have proven insufficient due to their limited size and lack of post-processing 
procedures such as rotation, scaling, blurring, and compression. Despite the fact that numerous 
academics have created their own datasets for inter-frame forgery detection tests, these datasets 
are still inaccessible to other communities and researchers that want to evaluate the effectiveness 
of their proposed algorithms. 
 
Performance and Evaluation 
Because many video forgery techniques are based on camera source identification, their 
performance degrades as the number of cameras grows. Furthermore, camera source identification 
algorithms rely significantly on intrinsic camera hardware properties such as lens and charge-
coupled device (CCD) sensor characteristics, which might degrade algorithm performance. The 
presence of video double compression artefacts adds to the difficulty of detecting video forgeries, 
especially when the analysed video is compressed with a low-quality factor, as seen in the majority 
of modern approaches. 
 
Similarly, video forgery detection is dependent on post-processing procedures such as edge 
blurring, compression, noise, scaling, and rotation. These operations can dramatically increase the 
likelihood of false positives. Unfortunately, most existing video forgery detection algorithms are 
vulnerable to such post-processing alterations, reducing their performance. 
 
Existing approaches are evaluated using a variety of measures, making direct comparisons 
impossible. As a result, there is an urgent need for standardised evaluation measures based on 
factors such as shifting lighting conditions and pixel correlation. Such standardised measurements 
would allow for smooth comparisons amongst algorithms, allowing for more significant insights 
into their comparative performance. 
 
Localization 
While video forgery detection can provide consumers with information about the validity of a 
video, improving the credibility of forgery detection systems requires precisely detecting the 
fabricated segments within the movie. Accurately localising video tampering remains a serious 
difficulty. Although certain developed algorithms can detect altered portions in a video, their 
accuracy rates have frequently fallen short. Furthermore, the challenge of locating tampered zones 
has received little attention in various research. As a result, significant advances in localising 
remnants of manufactured regions in edited videos have yet to materialise. The difficulty of 
existing approaches to effectively simulate structural changes caused by spatial forgery in movies 
has exacerbated the problem, making precisely localising the fabricated region a continuing 
challenge. 
 
Robustness 
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The ability to detect and localise multiple types of forgery extensively, rather than being limited 
to certain datasets, is a hallmark of algorithmic resilience. Many described algorithms show great 
accuracy on narrow evaluation datasets, but their performance does not always translate to a 
broader context. This makes comparing existing techniques difficult. The insufficient validation 
against standardised datasets is a key shortcoming of these approaches. As a result, there is an 
urgent need to create benchmark datasets that cover the detection and localization of all forgeries 
types in movies with high accuracy. Such benchmarks would be critical for confidently adopting 
these strategies in real-world applications. 
 
FUTURE DIRECTION 
Figure 7 depicts a thorough methodology for identifying and localising video forgeries, with the 
goal of aiding the research community for algorithm training, testing, and evaluation. There are 
several stages to the process: 
1. Feature Extraction: To extract features, various multi-resolution techniques such as Local 

Binary Pattern (LBP), Weber's Law Descriptor (WLD) [144], and Discriminative Robust 
Local Binary Pattern (DRLBP) are used. These strategies give complimentary data that is 
combined to generate a more distinct feature set. 

2. Feature Integration and Selection: To improve the efficacy of the extracted features, 
Principle Component Analysis (PCA) is used to identify the most relevant and 
distinguishing characteristics. The goal is to fine-tune the feature set and keep the features 
with the greatest discriminative potential. 

3. SVM classification: The features that were chosen are then supplied into a Support Vector 
Machine (SVM), which executes the classification task. Based on the discriminative 
features, the SVM distinguishes between real and fabricated films, which is an important 
stage in the forgery detection process. 

4. Edge Analysis: Recognising that edges frequently show tampering artefacts, the 
chrominance channels of the YCbCr colour model are scrutinised for edge anomalies. The 
Cb and Cr channels have been used by researchers to extract characteristics that signify 
structural changes and edge information. These channels were selected because they 
vividly capture the sharp edges caused by manipulation. 

5. Texture vs. Edge Information: While LBP approaches excel at capturing texture 
information, they may fall short of recognising edge abnormalities effectively. DRLBP and 
WLD are presented as improved options to alleviate this restriction. Because these 
approaches use both texture and edge data, they are more successful at detecting tampering 
cues in the spatial domain. 

6. geographical/Temporal Localization: The process includes the geographical or temporal 
localization of damaged regions. This localisation can be accomplished using either block-
based or clustered-based approaches, allowing the identification of locations within the 
video that have been modified. 
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Because of the large number of video frames that must be analysed, efficiency is a major challenge. 
Exploration of Convolutional Neural Network (CNN)-based techniques, such as deep learning 
(DL), auto encoders, or deep belief networks (DBN), becomes critical to strike a balance between 
accuracy and efficiency [58]. The success of these approaches in a variety of artificial intelligence 
(AI) fields, such as image recognition [59], speech recognition [60], and natural language 
processing (NLP) [61], demonstrates their utility. 
 
Deep learning [62] has not only accelerated advances in various machine learning techniques, but 
it has also found use in predicting drug molecule activities [63], reconstructing brain circuits [64], 
online particle detection [65], and forecasting the effects of non-coding DNA mutations on gene 
expression and disease [66], among other domains. The Convolutional Neural Network (CNN) 
[67] component has gained popularity due to its completely connected layers and ease of training. 
Google, Facebook, Yahoo!, Twitter, Microsoft, and IBM have all used CNN-based algorithms to 
power their endeavours. 
 
While the breadth of CNN's application is great, it frequently comes at the expense of speed. As a 
result, NVIDIA, Mobileye, Intel, Qualcomm, and Samsung have created dedicated CNN-based 
hardware chips to shorten training times. The concept of Extreme Learning Machines (ELM) 
develops in the pursuit for increased efficiency. ELM not only produces cutting-edge results, but 
it also dramatically cuts training periods from days to minutes, as opposed to days in deep learning. 
ELM has proven to be effective in a wide range of applications, including complex chemical 
process soft-sensing [68] and facial recognition [69]. 
 
Transfer learning [70] is still a hot topic in the machine learning community. This strategy involves 
transferring knowledge from a related, previously learned task to improve learning in a new task, 
especially when training data is limited. Training data scarcity can occur due to variables such as 
data sparsity, costly collecting and labelling costs, or unavailability. 
 
Efforts to investigate CNN-based methodologies, leverage the efficiency of ELM, and harness the 
knowledge transfer capabilities of transfer learning all contribute to addressing the challenge of 
maintaining accuracy while maintaining efficiency in the complex realm of video tampering 
detection and localization. 
 
CONCLUSION 
In conclusion, this research underscores the escalating concerns surrounding video forgery in the 
digital landscape. By synthesizing insights from a diverse range of passive blind detection 
approaches, the study enhances our understanding of effective forgery detection methodologies. 
The proposed video authentication method, characterized by its adeptness at detecting region and 
frame duplication, stands as a pivotal contribution to the field. Ultimately, this research aspires to 
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foster a more secure digital environment by combatting the proliferation of malicious video 
manipulations. 
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