
China Petroleum Processing and Petrochemical Technology 
 

Catalyst Research   Volume 23, Issue 2, September 2023   Pp. 1226-1233 

 
1226 DOI: 10.5281/zenodo.7778371 

METHODS AND ALGORITHMS OF PROTECTING WEB APPLICATIONS AGAINST 
COMMON ATTACKS 

 
Komil F. Kerimov, Zarina I. Azizova 

Tashkent University of Information Technologies named after Muhammad al-Khwarizmi, 
Uzbekistan 

Email: {kamil@kerimov.uz}, z.i.azizova18@gmail.com 

ABSTRACT 
The research of this paper focuses on attacks on web applications. String operations are 

the easiest to introduce during the web browsing and form transfer process, and consequently 
occur most frequently. We look at the characteristics and defense mechanism against these 
types of attacks to get a better solution in practice. 

Database management systems are often installed on the backend of various types of 
web applications as a platform, to provide for fetching and writing all kinds of data. SQL is the 
most popular query language for a relational database. 

This paper presents the best method for configuring system security using a firewall 
application, which is widely used by modern enterprises to secure the entire enterprise 
infrastructure. We investigate several common attack techniques such as cross-site scripting 
and SQL injection, and also present a new method for configuring system settings to enhance 
protection against common attacks from attackers. 
Keywords: cross-site scripting (XSS), SQL-injection, web application firewall (WAF), SQL-
query 
 
INTRODUCTION 

According to a network security incident research effort, 75% of the attacks were focused on web 
applications. However, these attacks couldn't be easily detected or prevented. Most of the problems 
occurred due to ignorance of software security during application or platform development. 
Application developers have a wide range of capabilities given their innate talents and professional 
skills. As a result, applications are frequently written in ways that are insecure from an information 
security point of view. In addition, some application platforms are developed and maintained 
entirely by a third-party vendor. These factors mentioned above not only lead to system or web 
application security vulnerabilities, as well as logical defects or transaction flow vulnerabilities, 
but also lead to loss of assets and the reputation of the enterprise itself due to these management 
issues. 
 The most fundamental solution for removing a web application vulnerability must be solved by 
making patches to the system or to the software itself. This can also be done using the white box 
testing method, which involves code analysis, system or web application vulnerability scanning 
tools, a penetration test, that requires higher level methods in order to find out about the problems 



China Petroleum Processing and Petrochemical Technology 
 

Catalyst Research   Volume 23, Issue 2, September 2023   Pp. 1226-1233 

 
1227 DOI: 10.5281/zenodo.7778371 

of your own application. It is also possible to install a firewall for the web application in the front-
end of the application node to ensure that the system is protected. 
The web application firewall [1] is a security equipment that belongs to the application layer. But 
incorrectly configured security settings will result in an insufficient level of security for the 
software or hardware. In this research work, we use a hardware-based, industrial-grade application 
firewall as the hardware to verify the implementation of security models. 
In addition to the security features in the system, we also deal with key characters for suppressive 
attack schemes such as SQL injection and cross-site scripts. Coding, conversion, deletion and other 
handling on the key symbols are required to avoid this attack behavior on the server or browser 
side. We also maintain a blacklist of keywords that need to be prevented in network traffic to 
improve system security. As a test environment, we create an e-commerce web application and 
install vulnerability scanning software of the application; we also test the servers by applying the 
most appropriate protection setting. The result is compared with a server scanning test without 
such setting to confirm the efficiency of the protection, which effectively prevents SQL injection 
and cross-site scripting attacks. 
Characteristics and Defense Mechanism against Web Application Attacks 
Web pages and web applications can be browsed by communicating between the user side ('client') 
and the host side ('server') via the HTTP or HTTPS protocols. The operation starts with the user 
entering a specific URL (or URI) into the browser, which sends a request to connect to the specified 
host. When the connection is established, the client sends one or more requests to access the web 
content. Once the application server has receives the request, it processes the request and responds 
with web content to the user. Usually, the request and response are paired. Most of the presented 
website not only uses a single Request/Response pair, but also a continuous Request/Response 
transmission in a single established connection session. Information can be transmitted via 
continuous Inquiry/Response pairs. Users can submit a request for information by clicking in a 
web browser or by filling out a form. The application node performs further processing regarding 
the user's request and responds accordingly. The web page displayed in the browser is a 
combination of the entire related Request/Response, as shown in Figure 1. 

TSP connection establishment 

Client

Server 

TSP connection end / termination 

Request

Response

 
Fig 1. Diagram of interaction between client and web server. 

In this way, malicious attacks on a website imitate the request response behavior used in normal 



China Petroleum Processing and Petrochemical Technology 
 

Catalyst Research   Volume 23, Issue 2, September 2023   Pp. 1226-1233 

 
1228 DOI: 10.5281/zenodo.7778371 

browsing and perform a malicious action during a Request; or use certain programming languages 
or browser design features to perform a malicious action when the server sends a Response 
message to the client. Either way, the attacks perform mostly by transmitting, typing or combining 
special grammar, text strings, malicious links and semantic tautology information. These attacks 
commonly exploit the initial web processing procedure causing the server or browser to fail in 
parsing the grammar or content. Tautology is also used to evade the normal logic checking 
mechanism in order to execute the attack. 
The implementation of structured query language (SQL injection), cross-site scripting attack (XSS 
attack) [6] and false cross-site queries (CSRF) are common attacks using a combination of 
sequences or programming language syntax. 
Some attacks are produced by the system or the application environment itself. They use a URL 
or form fields as an entry point to enter attack data when browsing the application website. This 
data is malware or functions that can be executed on the server and attack the host application to 
get system information such as password, file, or other important system configuration 
information, etc. Sometimes, hackers can download other malware through specific features of the 
application system. For example, using wget to connect to a remote host and download a trojan, 
backdoor and other malware. Hackers can also introduce commands to add new users or elevate 
the privileges of existing users. For example, a network command can be used to add a new user 
account and password to a Windows system. 

In addition, some attacks occur when connecting to or browsing a website. These are 
usually accompanied by the transmission of information entered or stored when data is entered 
into form fields or a session is established. This type of attack, which interrupts or interferes with 
transmitted information, is also known as a data validation attack. Another communication service-
based malicious action is called a denial-of-service attack (DoS attack) [2-5]. It uses an emergency 
connection, data request, or large connection that results in an interruption or failure of normal 
service. Recent studies show that among all malicious actions, SQL injection and cross-site 
scripting attack are the most common and the most serious attacks. 

This paper's research focuses on attacks against web applications. String operations are the 
easiest to inject during the web browsing and form transfer process, and as a consequence, occur 
most frequently. We examine the characteristics and defence mechanism against these types of 
attacks in order to obtain a more effective solution in practice. 
Database management systems are often installed on the backend of various kinds of web 
applications as a platform, to provide sampling and recording of all kinds of data. SQL is the most 
popular query language for a relational database. 

After the web server receives a frontend user request, it converts the required information 
into parameters and sends them to the backend database for further processing, together with the 
working commands of the database. It then retrieves the relevant information and passes the result 
back to the user. For example, a simple web page provides a user authentication mechanism by 
retrieving the username and password from form fields. The username field is called uid and the 
password field is called passwd. The username and password are stored in a database table called 



China Petroleum Processing and Petrochemical Technology 
 

Catalyst Research   Volume 23, Issue 2, September 2023   Pp. 1226-1233 

 
1229 DOI: 10.5281/zenodo.7778371 

user table. The backend server can implement the following SQL syntax: 
select * from user_table where uid=’”&request(“uid”) &”’and 
password=’”&request(“passwd”)&”’ 
The SQL command retrieves a string from the user_table where uid and password fields are the 
data entered by the user. In normal circumstances, if the data entered by the user is uid=user and 
password=abc123 and this information matches the data stored in the table, access to the website 
can be granted. However, if you instead enter a different SQL query in the uid and password fields, 
this will probably result in an unexpected script execution sequence that is different from the 
original server response as originally intended by the website developer. 
In the same way, using a website property that allows users to enter data, a piece of HTML or 
Java/VB script syntax can be entered, so that the server will first save or process the input data. 
Later, when the user wants to view the relevant page, the server must respond to the request. 
Legitimate information automatically merges with the malicious information, fills the HTML or 
script, and then is presented to the user's browser. This will result in unexpected actions that are 
not embedded in the web application, leading to a degree of negative impact. 
The target of such attack is not the server that provides the web application services, but the users 
browsing that site. When a user browses a web page containing attacker material, a certain Java 
Script, VB Script or other dynamic languages like ASP and PHP are initiated which are not 
embedded in the original web page. The implementation of further actions is unpredictable. They 
could consist of connecting to other websites, downloading unwanted data or injecting a Trojan 
that causes some degree of performance degradation. The degree of damage depends on the 
malware that was downloaded. 
MATERIALS AND METHODS 
The most dangerous attack, such as the injection of SQL commands [7], occurs because of careless 
input control. Input strings are executed because they are mistaken as part of the program or syntax. 
Similarly, hackers can exploit a validity problem in a logical programming language statement to 
imitate unexpected results and avoid a regular security check mechanism.  
As shown in Figure 1 above, the user will be sent an HTTP request to the server. By using requests 
like GET, POST or other methods, the client can get pictures, text or other useful information from 
the web server. The user can also send the information to the server for further processing; once 
the server receives these requests and interacts with them accordingly, it passes the requested 
information back to the user, to be added to the complete web page. 
If we will add application layer protection mechanisms to this client-server architecture, such as 
the application firewall as shown in Figure 2, during the browsing process, the HTTP request made 
by the user will be forwarded to the application firewall. The application firewall will perform 
filtering checks according to the settings. If there are no security concerns, the message can then 
be forwarded to the backend application server. 



China Petroleum Processing and Petrochemical Technology 
 

Catalyst Research   Volume 23, Issue 2, September 2023   Pp. 1226-1233 

 
1230 DOI: 10.5281/zenodo.7778371 

Browser 

Application firewall

Server 

HTTP Request HTTP Response 

HTTP Request HTTP Response 

 
Fig 2. Scheme of client-server interaction with the security device. 

After the user request is fully processed, it follows the same path back to the end user himself. In 
this case, we focus only on possible attacks from the user to the server and discuss defenses. That 
is, we would like to investigate a defense mechanism against server input. 

Protection against SQL injection 
Such attacks must use a logical approach and reasonable input values, together with the 

disruption of special characters of the source program accompanied by a normal SQL-query, to 
provoke the return of a tautologically correct value. If this type of attack was applied to the 
authentication login page, the identity authentication mechanism can easily be avoided and the 
login can be successfully logged in. It means that the hacker has a legal right to access the system 
resource.  To figure axis labels, use words rather than symbols. Do not label axes only with units. 
Do not label axes with a ratio of quantities and units.  

Protection against SQL injection 

Such attacks must use a logical approach and reasonable input values, together with the disruption 
of special characters of the source program accompanied by a normal SQL-query, to provoke the 
return of a tautologically correct value. If this type of attack was applied to the authentication login 
page, the identity authentication mechanism can easily be avoided and the login can be 
successfully logged in. It means that the hacker has a legal right to access the system resource.   
The most fundamental solution to defend against such attacks is to strengthen the verification 
mechanism of the application programme. All input requires detailed checks to determine the 
purity of the input data values before being passed to the downstream program for subsequent 
execution. In this way, we can eliminate the possibility of malicious input attacks. 
Regarding database access, experience shows that passing an SQL-query by string concatenation 
is not the best method. This method not only leads to security problems, as mentioned above, but 
also inadvertently leaks information about the database structure and the logical way the program 
works. A better approach is to send parameters to gain access to the database, together with 
checking the input parameters. This is more effective in preventing security problems. Control of 
responses to error messages should also be strengthened. Too much information should not be 
shown to the user. Users can gather error messages from the database by trial and error, and then 
refine the attack. 



China Petroleum Processing and Petrochemical Technology 
 

Catalyst Research   Volume 23, Issue 2, September 2023   Pp. 1226-1233 

 
1231 DOI: 10.5281/zenodo.7778371 

For input values of a parameter, if it contains special characters, the check must be strengthened. 
For example, further processing is required for single quotes ('), semicolons (;) and left slashes (\) 
so that the combination of SQL syntax with these special characters can be treated as a word or 
sequence rather than part of language syntax or grammar. 
Taking Citrix as an example, in its special character handling mechanism, if '' (single quotes) is 
encountered, an extra single quote is added before the character. Thus, the original characters will 
become purely symbolic because of this inverted comma. Combining the SQL-query in the process 
will not lead to unexpected results because of the logical judgement. For example, the original 
SQL looks like this: 
select * from usertab where uid = ’1989’ … 
If the malicious user input uid - with single quotes to replace 1989, such as 'or a = a--, the original 
sentence will become 
select * from usertab where uid=’ ’or a=a --’ … 
The backend server will treat uid as an empty sequence and the grammar structure will return 
tautological TRUE; After contacting special characters this will be turned into the following 
grammar 
select * from usertab where uid=’ ’’or a=a --’ … 
Despite the fact that there is still a grammatical structure problem, at least it does not make the uid 
parameter values larger than a true logical constant. Similarly, whenever "\" (backslash) is 
encountered, we can simply insert an extra slash to the left before the character to take it out of 
subsequent characters; in case ";" (semicolon) is found, we can simply remove the characters to 
prevent the SQL syntax character from being erased, so it will not cut off the normal and unfinished 
statement following the semicolon. 

Protection against cross-site scripting 
This type of attack is also caused by negligence in legitimate input validation. Malicious code 

can be entered as a sequence. When it is online, the browser treats it as a program and executes 
the code as an instruction. The severity of the impact depends on the functionality of this malware. 
It can direct the browser to execute a remote program or load an auto-executable program designed 
to do the trick when the drive is plugged into the system. The auto-exploiter might also download 
other malware from a pre-configured source and execute it on the local machine. Thus, the 
controller only needs to update the malicious code on the remote transfer station. The victim will 
be subjected to a lengthy attack. The other example is the theft of a victim's cookie. This cookie 
can be used successfully through a website's identity authentication mechanism, using the victims 
identity to gain access to the website. 

Defending against this type of attack is similar to protecting against SQL injection 
However, the syntax or symbols that are subject to protection checks mainly focus on the syntax 

of the web application that the browser can recognise. Within special characters, we must pay 
attention to angle brackets (<or >), the percent sign (%) or the corresponding conversion text. We 
can set the Citrix protection configuration to decode special characters once or several times, and 



China Petroleum Processing and Petrochemical Technology 
 

Catalyst Research   Volume 23, Issue 2, September 2023   Pp. 1226-1233 

 
1232 DOI: 10.5281/zenodo.7778371 

then recover with real characters to determine if they are special characters. This will protect the 
backend server from replying to the user with malicious code embedded in the web page. 

Despite the fact that the victim of such attacks is not the website itself, once the security incident 
becomes public knowledge, the negative image of the affected businesses or organisations will 
directly affect their profits or perception by the public. 

Protection against the injection of commands  
When protecting a system against the inclusion of a capability or command of the operating 

system or the database system itself, it is important to regularly refer to vulnerability alerts on 
linked sites. To strengthen the security of the system, it is highly recommended to update the 
system to the latest patch in a timely manner as soon as a significant security vulnerability is 
alerted. 

In addition, the security of the web application itself also needs to be strengthened. A content 
filtering mechanism can also be installed on the web server. Through the web server firmware or 
third party software, the "Overwrite" function can be performed under certain circumstances. This 
feature applies regular expressions to set a black and white list of characters and commands to 
filter and inspect a website. If a message to be sent to the server or a request to access website 
content contains illegal characters, the browser will be redirected to the specific page with a 
mandatory warning or receive a specific error message. You can restrict link source access to avoid 
entering a specific URL directly to avoid a specific page or information. 

Commonly, firewall applications contain appropriate content filtering features. Through 
input/output content filtering, they not only effectively prevent such access with special 
permissions, but also handle the response to certain web pages. For example, the default HTTP 
404 response for a non-existent page does not exist and an error response is generated. Another 
erroneous page can be shown instead of the default page to reinforce information about hidden 
anomalies on the web-service.   

 System infrastructure protection 
If an application firewall should be installed in an application website environment, it is 

recommended that in addition to the protection methods mentioned above, network infrastructure 
configuration adjustments should be performed. "Transparent" Mode should be prohibited; 
instead, the use of Reverse Proxy Mode is highly recommended. The so-called "Reverse" refers to 
a server that provides external services. Messages should be sent through the firewall and then to 
external users. This configuration requires an additional virtual IP to replace the real IP of the host. 
Otherwise, when users will browse the website, they will connect to the IP address of the virtual 
server assigned by the firewall. This virtual IP approach hides the real server IP information behind 
the application firewall. This allows the server to be relatively high degree of security. 
CONCLUSION 

This paper correlates the current prevailing methods according to their vulnerability to attacks and 
suggested protection attributes. We consider attacks based on string and command line operations 
and the corresponding protection mechanisms. If appropriate controls are implemented correctly, 
it will effectively reduce the injection of SQL, cross-site scripting and other attacks. This results 



China Petroleum Processing and Petrochemical Technology 
 

Catalyst Research   Volume 23, Issue 2, September 2023   Pp. 1226-1233 

 
1233 DOI: 10.5281/zenodo.7778371 

in a secure system environment. 
In addition to the control and filtering of input/output information in the application, adjustments 
to the system infrastructure will improve the security of web applications.  

Conflict of Interest 

The authors declare no conflict of interest. 

Author Contributions 

Both the authors participated in research and wrote this paper like writing the Introduction, 
performing literature survey, Defense mechanism against web application attacks, Protection 
methodology and Conclusion. 

REFERENCES 

[1] Rustam Kh. Khamdamov, Komil F. Kerimov, Jalol Oybek ugli Ibrahimov, Method of Developing 
a Web-Application Firewall, Journal of Automation and Information Sciences Volume 51, No.6, 
2019, P.61-65 

[2] A.Yu. Sheglov, Protection of computer information from unauthorized access, Moscow, M:Nauka 
i tekhnika, 2004, pp. 384. 

[3] K.V. Rzhavsky, Information security: practical protection of information technologies and 
telecommunication systems, Volgograd, V: Volgograd State University, 2002, pp. 50.   

[4] M.K. Nizamutdinov, Tactics of defense and attack on IT-applications, St. Petersburg, St.P: BHV-
Peterburg, 2005, pp. 30-60. 

[5] V.V. Domarev, Security of information technologies. Methodology of creating protection systems, 
Moscow, M: DiaSoft, 2002, pp. 56. 

[6] Veracode. Cross-Site Scripting: XSS Cheat Sheet, Preventing XSS Tutorial. Available: 
http://www.veracode.com/security/xss 

[7] M. Sonoda, T. Matsuda, D. Koizumi, S. Hirasawa, “On Automatic Detection of SQL Injection 
Attacks by the Feature Extraction of the Single Character” in Proc. International Conf. on Security 
of Information and Networks, ACM, 2011, pp. 81-86.  

[8] V.N. Opanasenko, S.L. Kryvyi, “Synthesis of Adaptive Logical Networks on the Basis of 
Zhegalkin Polynomials,” Cybernetics and Systems Analysis, vol. 51, no 6, pp. 969-977, Nov. 2015 
 


