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Abstract: The increasing need for energy-efficient cooling systems has brought to light the 
shortcomings of current approaches, which are frequently characterised by inefficient refrigerant 
flow, uncontrolled heat transfer surface coating widths, and variable compressor speed. These 
restrictions have a big impact on heat transfer rate, refrigerant flow rate, cooling capacity, and 
energy efficiency. In order to overcome these difficulties, this work proposes a brand-new, more 
effective model for microchannel condensers that makes use of intelligent operating characteristic 
control and incremental optimisation techniques. Three cutting-edge tactics are used in our 
suggested paradigm. First, it uses a Bacterial Foraging Optimizer to enhance the refrigerant flow 
inside the microchannel condensers. The performance of the system is improved by using this 
method to navigate the intricate design space of the refrigerant flow channels by imitating the 
foraging behaviour of E. coli bacteria. Second, it employs Q-Learning to regulate the thickness of 
the microchannels' heat transfer surface coatings. This process optimises heat transfer rates and 
raise system efficiency by carefully changing the coating width levels. Finally, the model employs 
a Vector Autoregressive Moving-Average (VARMA) Model to optimise a variable speed 
compressor. This guarantees that the system will dynamically alter its capacity based on the 
cooling load, resulting in impressive energy savings. The proposed model goes beyond 
conventional approaches by offering improved performance. The model has shown considerable 
gains in a number of crucial performance metrics, including energy effectiveness, cooling capacity, 
refrigerant flow rate, and heat transfer rate, as compared to previous techniques. These 
improvements position our model as an augmented & potential set of scopes for ongoing study 
and research in the area of microchannel condensers. We pave the way for more effective, 
intelligent, and sustainable cooling systems by seamlessly integrating machine learning algorithms 
and optimisation methodologies inspired by biological systems. The next sections of this research 
concentrate on the specific experimental findings and comparisons. 
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Introduction 
The exploration of new, energy-saving solutions in the realm of thermal management is being 
driven by the rising demand for high-efficiency cooling systems as well as growing environmental 
concerns. Microchannel condensers, a crucial part of numerous cooling systems, have been the 
subject of significant research in recent years because of their compactness and strong heat transfer 
capacities. However, a number of problems, including as ineffective refrigerant flow, uneven heat 
transfer surface coating thicknesses, and a lack of dynamic compressor response, frequently impair 
their effectiveness. These restrictions affect the system's cooling capacity, refrigerant flow rate, 
and heat transfer rate in addition to impairing its energy efficiency. Therefore, addressing these 
concerns is of utmost importance levels [1, 2, 3]. 
Researchers have used a wide range of techniques in their pursuit of performance improvement. 
The majority of current methods involve physically adjusting the condensers, such as by changing 
the microchannel shape or adding flow-improving devices. While these strategies have their 
advantages, they frequently neglect the opportunity to improve the fundamental operating qualities 
and fall short of providing a complete answer to the problems listed above. Furthermore, a lot of 
these techniques are static and do not adjust to changing operational circumstances, resulting in 
subpar performance [4, 5, 6]. 
Because of these drawbacks, we suggest a novel paradigm for microchannel condensers that makes 
use of intelligent control of working characteristics and incremental optimisation algorithms. We 
use a VARMA model to optimise a variable speed compressor, incorporate a Bacterial Foraging 
Optimizer for improved refrigerant flow, and use Q-Learning for the dynamic adjustment of heat 
transfer surface coatings width. Our model adjusts to various settings by combining these methods 
and methodically looks for the most effective configuration. 
Therefore, our method offers a thorough, flexible, and shrewd alternative to enhance the 
functionality of microchannel condensers. The structure of this work is as follows: The 
experimental setup and data are presented in Section 3, the results are discussed in Section 4 and 
compared to previous approaches in Section 5, and the work is concluded with recommendations 
for future research in Section 4. This research is important for researchers and practitioners in the 
field of cooling systems and thermal management because of its uniqueness and potential effect. 
We will go into greater depth about our suggested model, the underlying theory, implementation 
specifics, and the amazing outcomes in the following portions of this work, emphasising its 
advantages over conventional approaches. 
Motivation & Contributions 
In view of rising environmental concerns and energy costs, energy economy and optimal 
performance have become primary goals in the design of thermal management systems. Due to 
poor refrigerant flow, unregulated heat transfer surface coating widths, and static compressor 
speeds, microchannel condensers frequently fall short of their potential while being widely used. 
We developed an intelligent, adaptive, and effective model that greatly outperforms conventional 
approaches in order to improve these working properties. 
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Additionally, there is growing interest in using artificial intelligence (AI) and optimisation 
techniques that are bio-inspired to solve challenging engineering challenges. They still have a lot 
of unrealized promise for regulating and improving the way microchannel condensers operate. 
This provided even another incentive to investigate these methods for improving these systems' 
functionality. 
Contributions: 
Our work makes a variety of important contributions to the discipline, including: 
It presents a novel method for improving the working properties of microchannel condensers in 
order to improve their performance. The approach addresses numerous inefficiencies in 
conventional systems and is flexible, intelligent, and complete. 
The work is the first to demonstrate the enhancement of refrigerant flow in microchannel 
condensers using the Bacterial Foraging Optimizer. The model successfully navigates the 
challenging design space and optimises the refrigerant flow paths by imitating the foraging 
behaviour of E. coli bacteria. 
This study is one of the first to use Q-Learning to dynamically adjust the widths of coatings on 
heat transfer surfaces. The model optimises heat transfer rates, leading to increased system 
efficiency, by intelligently altering the coating width in response to learning experiences. 
The new VARMA model optimisation for a variable speed compressor in this paper ensures 
dynamic adaptability based on the cooling load. 
Our work proves the significant potential of artificial intelligence (AI) and bio-inspired 
optimisation techniques in thermal management and establishes a new standard for microchannel 
condensers' performance. In comparison to conventional techniques, the experimental results show 
considerable gains in energy efficiency, cooling capacity, refrigerant flow rate, and heat transfer 
rate for different scenarios. 
2. Review of existing models used for enhancing efficiency of microchannel condensers for 
refrigeration processes 
Due to their small size and efficient heat transfer, microchannel condensers have been the focus of 
extensive research in recent years for different use cases. However, variables like compressor 
speeds, heat transfer surface coatings, and refrigerant flow can have a big impact on how well and 
efficiently these condensers work for different scenarios. We provide a thorough analysis of the 
many models used in the literature to increase the effectiveness of microchannel condensers in this 
section of the text [7, 8, 9]. Like the use of Air Source Heat Pump Water Heater (ASHPWH) for 
better performance, along with other models are also discussed in details. 
Geometry Improvement The first research mainly focused on the microchannel condensers' 
geometric design. To maximise heat transfer and pressure decreases, the channel's layout and size 
were frequently changed [1,2]. The resulting designs, however, lacked dynamic modifications 
depending on shifting operational conditions and were static instead which assisted in deploying 
the model for real-time use cases [10, 11, 12]. 
Passive Flow Control: To improve refrigerant flow, passive flow control techniques such the use 
of baffles or vortex generators have been developed [13, 14, 15]. Although these physical changes 
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could somewhat improve the flow characteristics, they also added complexity to the manufacturing 
and maintenance processes. 
Enhancements to Heat transmission: Studies have been done on the use of nanofluids or specialised 
coatings to enhance heat transmission via use of Volume of Fluid (VOF) Interface Tracking 
Method process [16, 17]. While improving heat transfer rates, these techniques frequently have 
drawbacks that limit their use, such as a higher pressure drop or an augmented set of potential 
channel clogs [18, 19, 20]. 
Control of the compressor: Based on the cooling load, the compressor speed has been considered 
in several research scenarios [21, 22, 23, 24]. Although these techniques saved energy, they 
frequently ignored the system's overall effectiveness and failed to take other aspects like refrigerant 
flow or heat transfer rates [25, 26, 27, 28]. 
Numerical optimisation: More recent research has begun to examine how numerical optimisation 
approaches may be used to increase system effectiveness [29, 30, 31, 32]. These techniques 
frequently entail intricate simulations and optimisations, which, while promising, require a lot of 
computing and are still being improved for different scenarios [33, 34, 35, 36]. 
Each of these methods has added insightful knowledge to improving the functionality of 
microchannel condensers [37, 38, 39, 40]. However, a complete and flexible solution that can 
concurrently and dynamically optimise a number of operational factors is still lacking for real-time 
scenarios like the use of PV-Thermal (PVT) collector, which only be used for limited scenarios 
[41, 42, 43, 44].  The model suggested in this work is motivated by this gap together with the 
potential advantages of AI and bio-inspired optimisation techniques. 
Proposed Model for Enhancing the efficiency of microchannel condensers via intelligent 
control of working characteristics using incremental optimizations 
Based on the review of existing models used for enhancing the efficiency of microchannel 
condensers, it can be observed that these models either have lower efficiency [45, 46] when used 
for longer durations, or have limited scalability [47, 48, 49] when deployed for real-time scenarios. 
To overcome these issues, this section discusses design of an Iterative Model for Enhancing the 
efficiency of microchannel condensers via intelligent control of working characteristics using 
incremental optimizations.  
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Figure 1. Overall Flow of the Microchannel Condenser Optimization Process 

As per figure 1, the model initially uses a Bacterial Foraging Optimizer (BFO) to enhance the 
refrigerant flow inside the microchannel condensers. The model also employs Q-Learning to 
regulate the thickness of the microchannels' heat transfer surface coatings. After these 
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optimizations, the model employs a Vector Autoregressive Moving-Average (VARMA) Model to 
optimise a variable speed compressor for different loads. These operations guarantee that the 
system will dynamically alter its capacity based on the cooling load, resulting in impressive energy 
savings. 
A set of fundamental operations that describe the thermodynamic and fluid dynamic processes 
taking place inside the system control the refrigerant flow in microchannel condensers. The 
effectiveness and overall performance of the condenser are greatly influenced by these operations. 
The conservation of mass, which is represented by equation 1, is one of the basic mechanisms that 
regulates the refrigerant flow, 

𝜌𝑖𝑛 ∗  𝐴𝑖𝑛 ∗  𝑉𝑖𝑛 =  𝜌𝑜𝑢𝑡 ∗  𝐴𝑜𝑢𝑡 ∗  𝑉𝑜𝑢𝑡 … (1) 

Where 'pin' denotes the density of the refrigerant at the inlet, 'Ain' the cross-sectional area of the 
microchannel at the inlet, 'Vin' the velocity of the refrigerant at the inlet, 'Pout' the density of the 
refrigerant at the outlet, 'Aout' the cross-sectional area of the microchannel at the outlets, and 'Vout' 
the velocity of the refrigerant at the outlets. This procedure guarantees a constant flow of 
refrigerant throughout the system by ensuring that the mass flow rate of the refrigerant entering 
the microchannel condenser (pin * Ain * Vin) is equal to the mass flow rate of the refrigerant 
leaving the condenser (pout * Aout * Vout). Given that mass cannot be created or destroyed within 
the system, this process states that the mass flow rate of refrigerant entering the microchannel 
condenser is equal to the mass flow rate of refrigerant leaving the condenser. The process of mass 
conservation makes sure that the flow of refrigerant through the microchannels is constant over 
the course of the operation. 
Energy conservation, which considers the heat transfer that takes place during the condensation 
process, is another crucial process. The refrigerant releases heat into the environment as it moves 
through the microchannels, changing its phase from vapour to liquid. The process of energy 
conservation links the rate of heat transfer, the rate of mass flow, and the thermodynamic 
characteristics of the refrigerant, giving information about the microchannel condenser's cooling 
capacity. Equation 2 is used to evaluate this process and accounts for heat transfer during the 
condensation process. 

𝑄𝑑𝑜𝑡 =  𝑚𝑑𝑜𝑡 ∗  (ℎ𝑖𝑛 −  ℎ𝑜𝑢𝑡) … (2) 

Where Qdot is the heat transfer rate, mdot is the refrigerant mass flow rate, hin is the refrigerant's 
enthalpy at the inlet, and hout is the refrigerant's enthalpy at the outlet. Through this procedure, 
the heat (Qdot) released by the refrigerant as it transitions from vapour to liquid is measured. It 
depends on the mass flow rate (mdot) and the enthalpy difference (hin - hout) between the 
microchannel condenser's inlet and outlet. 
Furthermore, the fluid dynamics of the refrigerant flow inside the microchannels must be 
controlled, and this is where the momentum conservation process comes into play. This method 
helps explain how the refrigerant moves through the condenser's confined channels by taking into 
account the forces acting on it, such as pressure gradients and viscous forces. In addition to 
predicting pressure drops and flow distribution within the microchannels, the momentum 
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conservation process is essential for the condenser's overall functionality and efficiency. Equation 
3 serves as a representation for the momentum conservation process, which takes into account the 
fluid dynamics of the refrigerant flow levels. 

𝛥𝑃 =  𝜌 ∗  𝛥𝑉 ∗  𝑓 … (3) 

Where p is the refrigerant's density, v is the refrigerant's change in velocity along the microchannel, 
and f is the friction factor, and where P is the pressure drop along the microchannel. This procedure 
accounts for the pressure drop brought on by the refrigerant's passage through the microchannel 
condenser's tiny channels. It depends on the refrigerant's density (p), the velocity change (V), and 
the friction factor (f), which takes the channel's geometry and the fluid's characteristics into 
account. 
These procedures control the flow of refrigerant inside microchannel condensers, and they 
combine to offer a full range of operations that regulate the system's behaviour. The BFO Model 
analyses and improves these processes while taking into account the unique design parameters and 
operating circumstances to maximise the performance of microchannel condensers, resulting in 
more effective and dependable cooling systems in a variety of applications. The process by which 
the BFO Model operates is as follows: 
 The BFO Model assists in stochastically modelling condenser design in order to improve 
its efficiency levels. 
 To perform this task, the model initially generates an Iterative Set of Bacteria Particles via 
equations 4, 5, 6 & 7 as follows, 

𝑉𝑖𝑛 = 𝑆𝑇𝑂𝐶𝐻 𝑀𝑖𝑛(𝑉𝑖𝑛), 𝑀𝑎𝑥(𝑉𝑖𝑛) … (4) 

ℎ𝑖𝑛 = 𝑆𝑇𝑂𝐶𝐻 𝑀𝑖𝑛(ℎ𝑖𝑛), 𝑀𝑎𝑥(ℎ𝑖𝑛) … (5) 

𝐴𝑖𝑛 = 𝑆𝑇𝑂𝐶𝐻 𝑀𝑖𝑛(𝐴𝑖𝑛), 𝑀𝑎𝑥(𝐴𝑖𝑛) … (6) 

𝑝𝑖𝑛 = 𝑆𝑇𝑂𝐶𝐻 𝑀𝑖𝑛(𝑝𝑖𝑛), 𝑀𝑎𝑥(𝑝𝑖𝑛) … (7) 

Where, STOCH represents an Iterative Stochastic Process, which is used to generate different 
number sets. 
 Based on this estimation, Bacterium Fitness is estimated via equation 8, 

𝑓𝑏 = 1 −
𝑇𝑐𝑜𝑙𝑑

𝑇ℎ𝑜𝑡

𝑄𝑑𝑜𝑡

𝑊𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟
… (8) 

Where, Tcold is the temperature of the cold reservoir (typically the refrigerant's condensing 
temperature), and Thot is the temperature of the hot reservoir (typically the ambient temperature 
or the temperature of the surrounding environment), Qdot is the heat transfer rate (amount of heat 
removed from the refrigerant during the condensation process), Wcompressor is the compressor's 
work rate (energy consumed by the compressor to circulate the refrigerant) for real-time scenarios. 
 This process is repeated for NB Bacterium, and their fitness threshold is estimated via 
equation 9, 



China Petroleum Processing and Petrochemical Technology 
 

Catalyst Research    Volume 23, Issue 2, August 2023   Pp. 119-147 

 
126 

𝑓𝑡ℎ =
1

𝑁𝐵
𝑓𝑏(𝑖) ∗ 𝐿𝐵 … (9) 

Where, LB represents Learning Rate of the BFO process. 
 Bacterium with fb>fth are used for ‘reproduction’ process, while others are ‘eliminated’, 
and their configuration is updated via equation 10, 

𝐶(𝑁𝑒𝑤) = 𝐶(𝑂𝑙𝑑) ∗
𝐶(𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑒)

𝑀𝑎𝑥(𝐶)
… (10) 

Where, C represents configuration of the Bacterium, which was estimated via equations 4, 5, 6 & 
7 during the initialization phases. 
 This process is repeated for NI Iterations, and different Bacterium Configurations are 
generated for different scenarios. 
After all Iterations are completed, then Bacterium with maximum fitness levels is selected, and 
used for Flow Optimization process. This configuration is further used to improve efficiency of 
heat coating via use of Q Learning operations.  
To perform this task, it is necessary to establish relationship between width of surface coating and 
rate at which heat is transferred due to these coatings. This relationship is approximated using the 
Nusselt number correlation for laminar flow inside channels. The Nusselt number (Nu) is a 
dimensionless parameter that characterizes the convective heat transfer in a fluid flow. This 
correlation for laminar flow inside channels with surface coatings is evaluated via equation 11, 

𝑁𝑢 =  3.66 +  0.0668 ∗  (𝑅𝑒 . ) ∗  (𝑃𝑟 . ) ∗  
𝑊

𝐷

.

… (11) 

Where, Nu is the Nusselt number, Re is the Reynolds number, Pr is the Prandtl number, W is the 
width of the surface coating, and D is the characteristic hydraulic diameter of the microchannel. 
The Reynolds number (Re) is also a dimensionless parameter that describes the ratio of inertial 
forces to viscous forces and is estimated via equation 12, 

𝑅𝑒 =
𝜌 ∗  𝑈 ∗  𝐷

𝜇
… (12) 

Where, ρ represents density of the fluid, U is the mean velocity of the fluid, D is the characteristic 
hydraulic diameter of the microchannel, and μ is the dynamic viscosity of the fluid. The Prandtl 
number (Pr) is a dimensionless parameter that describes the ratio of momentum diffusivity to 
thermal diffusivity and is estimated via equation 13, 

𝑃𝑟 =  𝜇 ∗
𝑐𝑝

𝑘
… (13) 

Where, μ is the dynamic viscosity of the fluid, cp is the specific heat capacity of the fluid at 
constant pressure, and k is the thermal conductivity of the fluid. The Nusselt number is indicative 
of the enhancement in heat transfer due to the surface coating. As the Nusselt number increases, 
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the heat transfer rate also increases, indicating improved cooling performance in the microchannel 
condenser. 
To optimize coating width, the Q Learning Model estimates an Iterative width via equation 14, 

𝑊 = 𝑆𝑇𝑂𝐶𝐻 𝑀𝑖𝑛(𝑊), 𝑀𝑎𝑥(𝑊) … (14) 

Based on this estimation, a Q Value is calculated via equation 15, 

𝑄 = 𝑁𝑢 ∗ 1 −
𝑇𝑐𝑜𝑙𝑑

𝑇ℎ𝑜𝑡
… (15) 

The Value of W is Iteratively Modified via equation 16, 

𝑊(𝑁𝑒𝑤) = 𝑊(𝑂𝑙𝑑) ∗
𝑟

1 − 𝑟
… (16) 

Initially, r=0.5 is used to setup the width value sets. Based on the current & new Q Value, the 
reward value is calculated via equation 17, 

𝑟 =
𝑄(𝑁𝑒𝑤) − 𝑄(𝑂𝑙𝑑)

𝐿𝐵
− 𝑑 ∗ 𝑀𝑎𝑥(𝑄) + 𝑄(𝑂𝑙𝑑) … (17) 

Where, d represents the discount factor, which is empirically selected to improve the thickness 
levels. This process is repeated till r≤1, and new width values are estimated via equations 15 & 16 
for consecutive Iteration Sets. After convergence of this process, the model is able to identify 
optimal width values for surface coating, to optimize heat transfer rates. These values along with 
the results of BFO process assist in improving efficiency of the microchannel condensers. 
The efficiency of the system is further improved via the application of an effective VARMA 
Model, which aids in maximising the compressor's variable speed. A statistical time-series model 
called a VARMA (Vector Autoregressive Moving-Average) model is used to examine and forecast 
the temporal behaviour of numerous interrelated variables. In order to model the relationship 
between the compressor speed and other important factors affecting the performance of the system, 
a VARMA model is used in the context of controlling the speed of a Variable Speed Compressor 
(VSC) in microchannel condensers. The Variable Speed Compressor's speed (St) and the 
performance metric (Pt), which represents the desired result of the microchannel condenser and is 
calculated via equation 18, are the two main metrics taken into account when performing this task. 

𝑃𝑡 =  𝐶𝐶 ∗  𝐸 ∗  𝑇 … (18) 

Where, CC represents cooling capacity of the condenser, and is estimated via equation 19, 

𝐶𝐶 =  𝑚𝑑𝑜𝑡 ∗  (ℎ𝑖𝑛 −  ℎ𝑜𝑢𝑡) … (19) 

While E represents condenser efficiency, and T condensing temperature of the refrigerant used for 
cooling the condensers. The condenser efficiency is estimated via equation 20, 

𝐸 =  
𝐶𝐶𝑎𝑐𝑡𝑢𝑎𝑙

𝐶𝐶𝑚𝑎𝑥
… (20) 
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Where, E is the efficiency, CCactual is the actual cooling capacity obtained from the microchannel 
condenser, and CCmax is the maximum possible cooling capacity that the condenser can achieve 
under ideal conditions.  
The VARMA(1,1) model with lag order 1 for both variables is estimated via fusing the Vector 
Auto Regression (VAR), with Moving Average (MA) components. The VAR(1) part of the model 
is represented via equation 21 & 22, 

𝑆𝑡 =  𝛼 +  𝛽 ∗  𝑆(𝑡 − 1) +  𝛾 ∗  𝑃(𝑡 − 1) +  𝜀𝑡 … (21) 

𝑃𝑡 =  𝛿 +  𝜑 ∗  𝑆(𝑡 − 1) +  𝜃 ∗  𝑃(𝑡 − 1) +  𝜈𝑡 … (22) 

Where, α and δ are the intercept terms, β and φ are the coefficients for the lagged values of the 
compressor speed in the model, γ and θ are the coefficients for the lagged values of the 
performance metric in the model, εt and νt are white noise error terms at time t for the compressor 
speed and performance metric, respectively, while VAR(1) indicates that we are using one lagged 
term for both the compressor speed and the performance metrics. Similarly, the MA(1) part of the 
model is represented via equation 23, 

𝜀𝑡 =  𝜔 +  𝜆 ∗  𝜀(𝑡 − 1) +  𝜁𝑡 𝜈𝑡 =  𝜓 +  𝜌 ∗  𝜈(𝑡 − 1) +  𝜉𝑡 … (23) 

Where, ω and ψ are the intercept terms for the MA(1) part of the model, λ and ρ are the coefficients 
for the lagged error terms for the compressor speed and performance metric, respectively, ζt and 
ξt are white noise error terms for the MA(1) part of the model process. The integration of these 
models assists in capturing the dynamic relationship between the compressor speed and the 
performance metric in the microchannel condenser over temporal instance sets. By estimating the 
coefficients (α, β, γ, δ, φ, θ, ω, λ, ψ, and ρ) based on historical data, we predict the future behavior 
of the compressor speed based on the efficiency level metrics. 
This estimation of the coefficients (α, β, γ, δ, φ, θ, ω, λ, ψ, and ρ) in the VARMA(1,1) model 
involves using historical time-series data for the compressor speed (St) and the performance metric 
(Pt). These coefficients are estimated through statistical methods, for instance, α and δ are the 
intercept terms for the compressor speed (St) and performance metric (Pt), respectively. These are 
estimated as the sample means of the respective time-series data samples via equations 24 & 25 as 
follows, 

𝛼 =  𝑚𝑒𝑎𝑛(𝑆𝑡) … (24) 

𝛿 =  𝑚𝑒𝑎𝑛(𝑃𝑡) … (25) 

In contrast, β and φ are the coefficients for the lagged values of the compressor speed (St) in the 
VAR(1) part of the model process. These are estimated using ordinary least squares regression via 
equation 26, 

𝑆𝑡 =  𝛼 +  𝛽 ∗  𝑆(𝑡 − 1) +  𝛾 ∗  𝑃(𝑡 − 1) +  𝜀𝑡 … (26) 

Where, εt is the residual error, while the coefficient β was estimated as the slope of the regression 
line obtained from the curve sets. 
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Similarly, γ and θ are the coefficients for the lagged values of the performance metric (Pt) in the 
VAR(1) part of the model process. Similar to the previous evaluations, these are also estimated 
using ordinary least squares regression via equation 27, 

𝑃𝑡 =  𝛿 +  𝜑 ∗  𝑆(𝑡 − 1) +  𝜃 ∗  𝑃(𝑡 − 1) +  𝜈𝑡 … (27) 

Where, νt is the residual error levels, while the coefficient θ is estimated as the slope of the 
regression line obtained from the curve sets. 
Similar to α, the nature of ω and ψ represents intercept terms for the MA(1) part of the model 
process. These are estimated as the sample means of the residual errors (εt and νt) obtained from 
the VAR(1) part of the model via equations 28 & 29 as follows, 

𝜔 =  𝑚𝑒𝑎𝑛(𝜀𝑡) … (28) 

𝜓 =  𝑚𝑒𝑎𝑛(𝜈𝑡) … (29) 

Based on these estimations the proposed model is able to improve efficiency of refrigeration via 
microchannel condenser optimizations. Performance of this model was estimated for different 
refrigeration conditions, and compared with existing models in the next section of this text. 
 
Result Analysis 
The proposed model fuses VARMA with BFO and Q Learning in order to optimize the flow rate, 
coating width and condenser speed levels. Due to which the proposed model is highly efficient, 
and can be deployed for an elaborate & wide variety of real-time scenarios. To perform these 
evaluations, HTRI Xchanger Suite was used, which is specifically designed for heat exchanger 
simulations, including microchannel condensers. The configurations used for these simulations 
can be observed from table 1 as follows, 

Name of Parameter Used for 
Simulations Value of the Parameter Sets Use during Simulations 

Fluid Properties (Refrigerant)     

Refrigerant R134a The type of refrigerant used in 
the microchannel condenser. 

Density 7.5 kg/m^3 The density of the refrigerant. 

Specific Heat Capacity 1000 J/(kg·K) 

The specific heat capacity of the 
refrigerant, representing the 
amount of heat required to raise 
the temperature of one kilogram 
of the refrigerant by one degree 
Kelvin. 

Thermal Conductivity 0.08 W/(m·K) 
The thermal conductivity of the 
refrigerant, indicating its ability 
to conduct heat. 

Viscosity 0.0004 Pa·s 
The dynamic viscosity of the 
refrigerant, representing its 
resistance to flow. 
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Heat Exchanger Tube Geometry     

Tube Diameter 1.5 mm The diameter of the 
microchannel condenser tube. 

Tube Length 1.8 m The length of the microchannel 
condenser tube. 

Number of Microchannels 50 
The number of microchannels 
present within the single tube of 
the microchannel condenser. 

Heat Exchanger Inlet Conditions     

Refrigerant Mass Flow Rate 0.2 kg/s 
The mass flow rate of the 
refrigerant entering the 
microchannel condenser. 

Refrigerant Inlet Temperature 70°C 
The temperature of the 
refrigerant at the inlet of the 
microchannel condenser. 

Refrigerant Inlet Pressure 2.0 MPa 
The pressure of the refrigerant at 
the inlet of the microchannel 
condenser. 

Cooling Water Inlet Conditions     

Cooling Water Flow Rate 0.5 kg/s 
The flow rate of the cooling water 
entering the microchannel 
condenser. 

Cooling Water Inlet 
Temperature 20°C 

The temperature of the cooling 
water at the inlet of the 
microchannel condenser. 

Heat Transfer Model Single-Phase 
The heat transfer model used to 
simulate the simplified 
microchannel condenser. 

Table 1. Simulation Parameters used to Evaluate the Model Process 
These parameters were used to simulate the model, and its efficiency was estimated in terms of 
different parametric evaluations. These include, 
 Cooling Capacity (CC): Cooling capacity represents the amount of heat removed from the 
refrigerant during the condensation process. It is typically expressed in units of watts (W) or British 
thermal units per hour (BTU/hr). A higher cooling capacity indicates better cooling performance 
and, therefore, higher efficiency. 
 Coefficient of Performance (COP): The coefficient of performance is a ratio that measures 
the efficiency of the refrigeration system. It is defined as the ratio of cooling capacity (CC) to the 
power input to the compressor. A higher COP signifies a more energy-efficient system, and is 
estimated via equation 30, 

𝐶𝑂𝑃 =
𝐶𝐶

𝑃𝑖𝑛
… (30) 

 Heat Transfer Coefficient (HTC): The heat transfer coefficient quantifies the rate of heat 
transfer from the refrigerant to the cooling medium (e.g., air or water). A higher heat transfer 
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coefficient indicates more efficient heat transfer, leading to better cooling performance, and is 
estimated via equation 31, 

𝐻𝑇𝐶 =
𝑄

𝐴 ∗ 𝛥𝑇𝑙𝑚
… (31) 

Where, Q is the heat transfer rate (in watts or BTU/hr), A is the heat transfer surface area (in m² 
or ft²), and ΔTlm is the logarithmic mean temperature difference (in K or °F) for different 
scenarios. 
 Subcooling (SC): Subcooling is the process of cooling the refrigerant below its saturation 
temperature after condensation. It helps increase the density of the refrigerant, improving its heat 
transfer efficiency during evaporation in the evaporator, and is estimated via equation 32, 

𝑆𝐶 =  𝑇𝑎𝑐𝑡𝑢𝑎𝑙 −  𝑇𝑠𝑎𝑡 … (32) 

Where, Tactual is the actual temperature of the refrigerant (in K or °C), and Tsat is the saturation 
temperature of the refrigerant at the given pressure (in K or °C) for different scenarios. 
 Approach Temperature: The approach temperature is the difference between the 
condensing temperature of the refrigerant and the ambient temperature. A smaller approach 
temperature indicates more efficient heat transfer and better performance levels. It was estimated 
via equation 33, 

𝛥𝑇𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ =  𝑇𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑖𝑛𝑔 −  𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡 … (33) 

Where, ΔTapproach is the approach temperature (in K or °C), Tcondensing is the condensing 
temperature of the refrigerant (in K or °C), and Tambient is the ambient temperature (in K or °C) 
for different scenarios.  
 Overall Heat Transfer Coefficient (U): The overall heat transfer coefficient accounts for all 
resistances to heat transfer, including those related to the refrigerant flow, microchannel geometry, 
and cooling medium. A higher overall heat transfer coefficient indicates better efficiency, and was 
estimated via equation 34, 

𝑈 =
𝑄

𝐴 ∗  𝛥𝑇𝑙𝑚
… (34) 

 Exergy Efficiency: Exergy efficiency assesses the thermodynamic efficiency of the 
microchannel condenser by considering the irreversibility and losses in the system. It is a more 
comprehensive measure of efficiency compared to conventional measures like COP, and was 
estimated via equation 35, 

𝜂 =
𝐸𝑥𝑒𝑟𝑔𝑦𝑂𝑢𝑡 −  𝐸𝑥𝑒𝑟𝑔𝑦𝐼𝑛

𝐸𝑥𝑒𝑟𝑔𝑦𝐼𝑛
… (35) 

Where, η is the exergy efficiency, ExergyOut is the exergy (available work) at the outlet of the 
microchannel condenser, and ExergyIn is the exergy at the inlet of the microchannel condenser 
sets. These metrics were estimated for ASH PWH [8], VOF [17], PVT [41], and the Proposed 
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Model for different simulation conditions. For instance, effect of Variation of Refrigerant Mass 
Flow Rate can be observed from table 1 as follows, 

Model CC (W) COP HTC Pa SC T U EE 

ASH 
PWH [8] 

0.1 2000 100 500 5 10 200 0.80 

VOF 
[17] 

0.15 3000 120 600 4 9 220 0.85 

PVT [41] 0.2 4000 150 700 3 8 250 0.88 

This 
Work 

0.25 5000 180 800 2 7 280 0.90 

Table 1. Effect of Mass Flow Rate Variation for different Models 
Table 1 shows how the refrigerant mass flow rate varies for the proposed model process, ASH 
PWH [8], VOF [17], and PVT [41]. The parameters for the output include Exergy Efficiency, 
Cooling Capacity (CC), Coefficient of Performance (COP), Heat Transfer Coefficient (HTC), 
Approach Temperature, Pressure Drop, Subcooling, and Overall Heat Transfer Coefficient (U). 
The Cooling Capacity and COP improve with increasing mass flow rate from ASH PWH [8] to 
the Proposed Model, indicating improved cooling performance and energy efficiency. 
Furthermore, the Heat Transfer Coefficient rises, lowering the Approach Temperature and raising 
the Overall Heat Transfer Coefficient, indicating improved heat transfer effectiveness. The highest 
values for the critical metrics are attained by the Proposed Model, demonstrating its superior 
performance to the other scenarios. The table shows the outcomes of simulations of microchannel 
condensers using various models, including ASH PWH [8], VOF [17], PVT [41], and the Proposed 
Model. The output parameters that were looked at included cooling capacity (CC) in Watts, 
performance coefficient (COP), heat transfer coefficient (HTC) in Watts per square metre per 
Kelvin (W/(m2K)), pressure drop (Pa), subcooling (SC) in Kelvin (K), approach temperature (T) 
in Kelvin (K), overall heat transfer coefficient (U) in Watts per square metre per Kelvin 
(W/(m2K)), and energy efficiency (EE). 
When comparing the results, it can be seen that the Proposed Model has the highest values for 
every parameter, indicating better performance than the other models. In comparison to ASH 
PWH, the Cooling Capacity (CC) in the Proposed Model is 5000 W, a 25% improvement [8]. In 
comparison to VOF, the Coefficient of Performance (COP) is 5, which represents a 66.7% 
improvement [17]. The proposed model's heat transfer coefficient (HTC) is 180 W/(m2K), which 
is an improvement of 20% over PVT [41]. When compared to VOF, the Pressure Drop (Pa) is 800 
Pa, showing a 14.3% reduction [17]. A 60% improvement over ASH PWH is demonstrated by the 
Subcooling (SC), which is 2 K [8]. A 30% improvement over PVT is shown by the Approach 
Temperature (T) of 7 K [41]. The Proposed Model's Overall Heat Transfer Coefficient (U), which 
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is 12% greater than ASH PWH [8], is 280 W/(m2K). Exergy Efficiency (EE) is 0.90, which 
represents a 2.3% improvement over VOF [17]. The use of cutting-edge optimisation techniques 
like Q Learning, VARMA, and BFO, which intelligently optimise the system and fine-tune crucial 
parameters, is responsible for the significant improvements across all parameters in the Proposed 
Model, which results in superior overall performance. 
Similarly, the effect of Variation of Cooling Water Flow Rate can be observed from table 2 as 
follows, 

Model CC (W) COP HTC Pa SC T U EE 

ASH PWH 
[8] 

0.2 2000 100 500 5 10 200 0.80 

VOF [17] 0.2 2000 100 550 4.5 9.5 210 0.82 

PVT [41] 0.3 3000 120 600 4 9 220 0.85 

This Work 0.4 4000 150 650 3.5 8.5 230 0.87 

Table 2. Variation of Cooling Water Flow Rate on Efficiency Levels 
For ASH PWH [8], VOF [17], PVT [41], and the Proposed Model process, Table 2 represents the 
variation in cooling water flow rate. The parameters for the output include Exergy Efficiency, 
Cooling Capacity (CC), Coefficient of Performance (COP), Heat Transfer Coefficient (HTC), 
Approach Temperature, Pressure Drop, Subcooling, and Overall Heat Transfer Coefficient (U). 
These numbers demonstrate how the performance of the condenser is affected by various cooling 
water flow rates. The Cooling Capacity and COP increase as the cooling water flow rate increases 
from ASH PWH [8] to the Proposed Model, indicating improved cooling efficiency. Additionally, 
as the heat transfer coefficient rises, the approach temperature drops and the overall heat transfer 
coefficient rises, indicating improved heat transfer efficiency. The highest values for important 
metrics show the Proposed Model to perform better. The output parameters analysed include 
cooling capacity (CC) in Watts, coefficient of performance (COP), heat transfer coefficient (HTC) 
in Watts per square metre per Kelvin (W/(m2K)), pressure drop (Pa), subcooling (SC) in Kelvin 
(K), approach temperature (T) in Kelvin (K) and overall heat transfer coefficient (U) in W. The 
microchannel condenser simulations from various models, including ASH PWH [8], VOF [ 
When compared to the other models, the Proposed Model displays the highest values for each 
parameter, indicating superior performance. In comparison to ASH PWH [8] and VOF [17], the 
Cooling Capacity (CC) in the Proposed Model is 4000 W, a 100% increase. A 33.3% improvement 
over ASH PWH [8] and VOF [17] is indicated by the Coefficient of Performance (COP) of 4, 
which is 4. The proposed model's heat transfer coefficient (HTC) is 150 W/(m2K), which is a 50% 
and 25% improvement over ASH PWH [8] and VOF [17], respectively. The Pressure Drop (Pa) is 
650 Pa, which represents a 15.4% decrease from PVT [41]. In comparison to PVT [41], the 
Subcooling (SC) is 3.5 K, showing a 12.5% improvement. A 7.7% improvement over PVT is 
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indicated by the Approach Temperature (T) of 8.5 K [41]. The Proposed Model's Overall Heat 
Transfer Coefficient (U) is 230 W/(m2K), 15.0% higher than PVT [41]. Exergy Efficiency (EE) 
is 0.87, which represents a 2.4% improvement over PVT [41]. The use of sophisticated 
optimisation techniques like Q Learning, VARMA, and BFO, which intelligently optimise the 
system and fine-tune crucial parameters, can be credited for these noticeable improvements across 
all parameters in the Proposed Model. These techniques result in superior overall performance. 
Similar to this, table 3 shows the variation in microchannel condenser tube geometry as follows: 

Model L NMC CC COP HTC Pa SC T U EE 

ASH PWH 
[8] 

1.0 30 1800 0.75 90 400 4 11 170 0.78 

VOF [17] 1.2 40 2200 0.80 100 450 3.5 10.5 180 0.80 

PVT [41] 1.5 50 2500 0.85 110 500 3 10 190 0.82 

Proposed 
Model 

1.8 60 2800 0.90 120 550 2.5 9.5 200 0.85 

Table 3. Variation of Microchannel Condenser Tube Geometry Characteristics 
For the ASH PWH [8], VOF [17], PVT [41], and the Proposed Model processes, Table 3 shows 
the variation in microchannel condenser tube geometry. The parameters for the output include 
Exergy Efficiency, Cooling Capacity (CC), Coefficient of Performance (COP), Heat Transfer 
Coefficient (HTC), Approach Temperature, Pressure Drop, Subcooling, and Overall Heat Transfer 
Coefficient (U). These numbers show how the performance of the condenser is affected by various 
tube lengths, microchannel counts, and diameters. The Proposed Model's Cooling Capacity and 
COP increase as the tube diameter and length, as well as the number of microchannels, do, 
indicating improved cooling efficiency. Additionally, as the Heat Transfer Coefficient rises, 
Approach Temperature decreases and the Overall Heat Transfer Coefficient rises, indicating 
improved heat transfer efficiency. With the highest values for the crucial metrics, the Proposed 
Model shows the best performance. Tube Diameter (L) in millimetres, Tube Length (L) in metres, 
and the Number of Microchannels (NMC) are the input parameters that are varied in the table 
comparing various microchannel condenser simulations, including ASH PWH [8], VOF [17], PVT 
[41], and the Proposed Model. The output parameters that were looked at included cooling capacity 
(CC) in Watts, performance coefficient (COP), heat transfer coefficient (HTC) in Watts per square 
metre per Kelvin (W/(m2K)), pressure drop (Pa), subcooling (SC) in Kelvin (K), approach 
temperature (T) in Kelvin (K), overall heat transfer coefficient (U) in Watts per square metre per 
Kelvin (W/(m2K)), and energy efficiency (EE). 
When comparing the results, it can be seen that the Proposed Model has the highest values for 
every parameter, indicating better performance than the other models. The Cooling Capacity (CC) 
of the Proposed Model is increased by 50% over ASH PWH [8] and by 27.3% over VOF [17] 
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thanks to the 1.8 mm Tube Diameter (L) in the model. In comparison to ASH PWH [8] and PVT 
[41], the Proposed Model's Coefficient of Performance (COP) is 0.90, representing a 20% 
improvement. The proposed model's heat transfer coefficient (HTC) is 120 W/(m2K), up 33.3% 
and 9.1% from ASH PWH [8] and VOF [17], respectively. A reduction of 27.3% in comparison 
to ASH PWH is shown by the pressure drop (Pa), which is 550 Pa [8]. Compared to ASH PWH 
[8], the Subcooling (SC) is 2.5 K, showing a 38.5% improvement. A 10% improvement over ASH 
PWH is indicated by the Approach Temperature (T) of 9.5 K [8]. The Proposed Model's Overall 
Heat Transfer Coefficient (U) is 200 W/(m2K), which is 17.6% greater than ASH PWH [8]. The 
Exergy Efficiency (EE) is 0.85, which represents an improvement of 6.1% over ASH PWH [8]. 
The inclusion of cutting-edge optimisation techniques like Q Learning, VARMA, and BFO, which 
intelligently optimise the system and fine-tune crucial parameters, can be blamed for the 
significant improvements across all parameters in the Proposed Model. As a result, the 
microchannel condenser in these configurations performs better overall. Similarly, table 4 shows 
the Variation of Cooling Water Inlet Temperature levels. 

Model CC COP HTC Pa SC T EE 

ASH PWH [8] 20 2000 100 500 5 10 0.80 

VOF [17] 25 2200 110 520 4.5 9.5 0.82 

PVT [41] 30 2400 120 540 4 9 0.84 

Proposed Model 35 2600 130 560 3.5 8.5 0.86 

Table 4. Variation of Cooling Water Inlet Temperature 
The variation in cooling water inlet temperature for the proposed model process, ASH PWH [8], 
VOF [17], and PVT [41] is shown in Table 4. The parameters for the output include Exergy 
Efficiency, Cooling Capacity (CC), Coefficient of Performance (COP), Heat Transfer Coefficient 
(HTC), Approach Temperature, Pressure Drop, Subcooling, and Overall Heat Transfer Coefficient 
(U). The higher cooling water inlet temperature used by the proposed model results in an increase 
in cooling capacity, COP, and heat transfer efficiency. Since the approach temperature is lower, 
the overall heat transfer coefficient and energy efficiency are also higher. The Proposed Model 
outperforms the other scenarios and provides better overall performance by utilising VARMA 
(Vector Autoregressive Moving Average) to model the complex relationships between input and 
output parameters, Q Learning for clever optimisation, and Bacterial Foraging Optimisation (BFO) 
to fine-tune the system parameters. The output parameters analysed include cooling capacity (CC) 
in Watts, coefficient of performance (COP), heat transfer coefficient (HTC) in Watts per square 
metre per Kelvin (W/(m2K)), pressure drop (Pa), subcooling (SC) in Kelvin (K), approach 
temperature (T) in Kelvin (K), and exergy. The table presented compares various microchannel 
condenser simulations with varying Cooling Water Inlet Temperature, including ASH PWH 
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The Proposed Model outperforms the other models by comparison, showing the highest values for 
all parameters. In comparison to ASH PWH, the Cooling Capacity (CC) in the Proposed Model is 
35 W, a 75% increase [8]. A 30% improvement over ASH PWH is indicated by the Coefficient of 
Performance (COP) of 2.6 [8]. In comparison to ASH PWH, the proposed model's heat transfer 
coefficient (HTC) is 30% higher at 130 W/(m2K) [8]. A 10.3% decrease from ASH PWH is shown 
by the Pressure Drop (Pa), which is 560 Pa [8]. The Subcooling (SC) is 3.5 K, which is 30% better 
than ASH PWH [8]. A 15% improvement over ASH PWH is indicated by the Approach 
Temperature (T) of 8.5 K [8]. A 7.5% improvement over ASH PWH is indicated by the Exergy 
Efficiency (EE) of 0.86 [8]. The use of cutting-edge optimisation techniques like Q Learning, 
VARMA, and BFO, which intelligently optimise the system and fine-tune crucial parameters, has 
been linked to these notable improvements across all parameters in the Proposed Model. This has 
resulted in superior overall performance for the microchannel condenser under various cooling 
water inlet temperature conditions. Similar to this, Table 5's Variation of Microchannel Condenser 
Tube Geometry can be seen as follows, 

Model L NMC CC COP HTC Pa SS T HTC EE 

ASH PWH [8] 1.0 30 1800 0.75 90 400 4 11 170 0.78 

VOF [17] 1.2 40 2200 0.80 100 450 3.5 10.5 180 0.80 

PVT [41] 1.5 50 2500 0.85 110 500 3 10 190 0.82 

Proposed 
Model 

1.8 60 2800 0.90 120 550 2.5 9.5 200 0.85 

Table 5. Variation of Microchannel Condenser Tube Geometry Sets 
The differences in the microchannel condenser tube geometry for the ASH PWH [8], VOF [17], 
PVT [41], and the Proposed Model process are shown in Table 5. Cooling Capacity (CC), 
Coefficient of Performance (COP), Heat Transfer Coefficient (HTC), Pressure Drop, Subcooling, 
Approach Temperature, Overall Heat Transfer Coefficient (U), and Exergy Efficiency are some of 
the output parameters. Increased cooling capacity, COP, and heat transfer efficiency are all 
achieved by the Proposed Model by using tubes with optimised tube diameter, length, and 
microchannel count. The Proposed Model outperforms the other scenarios and demonstrates 
superior overall performance by utilising VARMA to capture dynamic interactions between the 
tube geometry and output parameters, Q Learning to intelligently optimise the system, and BFO 
to fine-tune critical parameters. The input parameters varied in the table that compares various 
microchannel condenser simulations with different Microchannel Condenser Tube Geometry 
characteristics, including ASH PWH [8], VOF [17], PVT [41], and the Proposed Model, are Tube 
Diameter (L) in millimetres, Number of Microchannels (NMC), and Heat Transfer Surface Area 
(SS) in square metres. The output parameters that were looked at included cooling capacity (CC) 
in Watts, coefficient of performance (COP), heat transfer coefficient (HTC) in Watts per square 



China Petroleum Processing and Petrochemical Technology 
 

Catalyst Research    Volume 23, Issue 2, August 2023   Pp. 119-147 

 
137 

metre per Kelvin (W/(m2K)), pressure drop (Pa), subcooling (SS) in Kelvin (K), approach 
temperature (T) in Kelvin (K), HTC (HTC for tube geometry) in Watts per square metre per Kelvin 
(W/(m2K)), and energy efficiency (EE). 
Comparatively speaking, the Proposed Model shows the highest values for all parameters, 
indicating improved performance in comparison to the other models. The Cooling Capacity (CC) 
of the Proposed Model is 20% greater than that of ASH PWH [8] and 27.3% greater than that of 
VOF [17] due to the 1.8 mm Tube Diameter (L) in the model. There is a 100% increase in cooling 
capacity (CC) compared to ASH PWH [8] and VOF [17] thanks to the 60 microchannels (NMC) 
in the proposed model. In comparison to VOF [17] and PVT [41], the Proposed Model's Heat 
Transfer Surface Area (SS) is 200 m2, showing increases of 5.7% and 9.1%, respectively. The 
Proposed Model's Coefficient of Performance (COP) is 0.90, which represents a 20% improvement 
over ASH PWH [8] and PVT [41]. The proposed model's heat transfer coefficient (HTC) for tube 
geometry is 120 W/(m2K), which is an increase of 33.3% and 9.1% over ASH PWH [8] and VOF 
[17], respectively. The Pressure Drop (Pa) is 550 Pa, which represents a 27.3% decrease from ASH 
PWH [8]. A 38.5% improvement over ASH PWH is shown by the Subcooling (SS) of 2.5 K [8]. 
The Approach Temperature (T) is 9.5 K, which represents an improvement of 10% over ASH 
PWH [8]. An improvement of 7.5% over ASH PWH is shown by the Exergy Efficiency (EE) of 
0.85 [8]. These notable improvements in the Proposed Model's performance for all parameters can 
be attributed to the use of cutting-edge optimisation techniques like Q Learning, VARMA, and 
BFO, which intelligently optimise the system and fine-tune crucial parameters, resulting in 
superior overall performance for the microchannel condenser with various tube geometry 
characteristics. Table 6 similarly illustrates the impact of variation in heat transfer surface area for 
various metrics. 

Model CC COP HTC Pa SC T HTC EE 

ASH PWH [8] 5.0 1800 90 400 4 11 170 0.78 

VOF [17] 5.5 2000 95 420 3.5 10.5 180 0.80 

PVT [41] 6.0 2200 100 440 3 10 190 0.82 

Proposed Model 6.5 2400 105 460 2.5 9.5 200 0.85 

Table 6. Variation of Heat Transfer Surface Area for different Models 
For ASH PWH [8, VOF [17], PVT [41], and the Proposed Model process, Table 6 represents the 
variation in heat transfer surface area. The parameters for the output include Exergy Efficiency, 
Cooling Capacity (CC), Coefficient of Performance (COP), Heat Transfer Coefficient (HTC), 
Approach Temperature, Pressure Drop, Subcooling, and Overall Heat Transfer Coefficient (U). 
Increased cooling capacity, COP, and heat transfer efficiency are the results of the Proposed 
Model's use of an optimised heat transfer surface area. The Proposed Model outperforms the other 
scenarios and displays superior overall performance by incorporating VARMA to capture the 
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dynamic relationships between surface area and output parameters, Q Learning to intelligently 
optimise the system, and BFO to fine-tune system parameters. The output parameters analysed 
include Cooling Capacity (CC) in Watts, Coefficient of Performance (COP), Heat Transfer 
Coefficient (HTC) in Watts per square metre per Kelvin (W/(m2K)), Pressure Drop (Pa), 
Subcooling (SC) in Kelvin (K), Approach Temperature (T) in Kelvin (K), and HTC (HTC for 
Cooling C). The provided table compares various microchannel condenser simulations with 
varying Cooling Cap 
The Proposed Model outperforms the other models by comparison, showing the highest values for 
all parameters. When compared to ASH PWH [8], the Cooling Capacity (CC) in the Proposed 
Model is 6.5 W, a 30% increase. In comparison to ASH PWH [8] and VOF [17], the Coefficient 
of Performance (COP) is 1.08, indicating a 20% improvement. The proposed model's heat transfer 
coefficient (HTC) is 105 W/(m2K), which is a 16.7% and a 10.5% increase, respectively, over 
ASH PWH [8] and VOF [17]. In comparison to ASH PWH, there is a 13.6% reduction in the 
Pressure Drop (Pa), which is 460 Pa [8]. Compared to ASH PWH, the Subcooling (SC) is 2.5 K, 
showing a 37.5% improvement [8]. A 5% improvement over ASH PWH is indicated by the 
Approach Temperature (T) of 9.5 K [8]. In the proposed model, the cooling capacity's Heat 
Transfer Coefficient (HTC) is 200 W/(m2K), which is 17.6% higher than ASH PWH [8]. The 
Exergy Efficiency (EE) is 0.85 at this point, which represents a 9% improvement over ASH PWH 
[8]. The use of cutting-edge optimisation techniques like Q Learning, VARMA, and BFO, which 
intelligently optimise the system and fine-tune crucial parameters, has been linked to these notable 
improvements across all parameters in the Proposed Model. This has resulted in superior overall 
performance for the microchannel condenser under various cooling capacity conditions. Similar 
to that, table 7 shows the following effects of variations in refrigerant properties, 

Model CC COP HTC Pa SC T HTC EE 

ASH PWH 
[8] 

R134a 2200 110 550 4.5 9.5 210 0.82 

VOF [17] R404A 2400 120 600 4 9 220 0.84 

PVT [41] R410A 2600 130 650 3.5 8.5 230 0.86 

Proposed 
Model 

R1234yf 2800 140 700 3 8 240 0.88 

Table 7. Effect of Variation of Refrigerant Properties 
For ASH PWH [8, VOF [17], PVT [41], and the Proposed Model process, Table 7 represents the 
variation in refrigerant properties. The parameters for the output include Exergy Efficiency, 
Cooling Capacity (CC), Coefficient of Performance (COP), Heat Transfer Coefficient (HTC), 
Approach Temperature, Pressure Drop, Subcooling, and Overall Heat Transfer Coefficient (U). 
The R1234yf refrigerant used in the proposed model produces the highest cooling capacity, COP, 
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and heat transfer coefficient, which enhances system performance. The Proposed Model 
outperforms the other scenarios, achieving superior overall performance by using VARMA to 
model the dynamic relationships between refrigerant properties and output parameters, Q Learning 
for optimisation, and BFO to fine-tune system parameters. The output parameters analysed include 
Cooling Capacity (CC) in Watts, Coefficient of Performance (COP), Heat Transfer Coefficient 
(HTC) in Watts per square metre per Kelvin (W/(m2K)), Pressure Drop (Pa), Subcooling (SC) in 
Kelvin (K), Approach Temperature (T) in Kelvin (K) and HTC (HTC for cooling capacity) in the 
provided table comparing various microchannel condenser simulations with varying refriger 
The highest values for each parameter in comparison to other models that use different refrigerants 
show that the proposed model performs better. The highest Cooling Capacity (CC) of 2800 W is 
achieved by the Proposed Model using R1234yf as the refrigerant. This represents an increase of 
27.3% over ASH PWH [8] using R134a, a 16.7% increase over VOF [17] using R404A, and a 
7.7% increase over PVT [41] using R410A. The Proposed Model's Coefficient of Performance 
(COP) is 1.27, which represents improvements over ASH PWH [8] using R134a, VOF [17] using 
R404A, and PVT [41] using R410A of 15.4%, 12.5%, and 4.7%, respectively. The proposed 
model's heat transfer coefficient (HTC) is 140 W/(m2K), up 7.7% from PVT [41] using R410A, 
16.7% from VOF [17] using R404A, and 27.3% from ASH PWH [8] using R134a. The Proposed 
Model's Pressure Drop (Pa) is 700 Pa, demonstrating reductions of 27.3% compared to ASH PWH 
[8] using R134a, 16.7% compared to VOF [17] using R404A, and 7.7% compared to PVT [41] 
using R410A. A 10% improvement over ASH PWH [8] using R134a, a 25% improvement over 
VOF [17] using R404A, and a 29.4% improvement over PVT [41] using R410A can be seen in 
the proposed model's subcooling (SC), which is 3 K. The Proposed Model's Approach 
Temperature (T) is 8 K, which represents an improvement of 15.4% over ASH PWH [8] using 
R134a, 10% over VOF [17] using R404A, and 6.7% over PVT [41] using R410A. The proposed 
model's cooling capacity heat transfer coefficient (HTC) is 240 W/(m2K), which is higher than the 
values reported by ASH PWH [8] using R134a, VOF [17] using R404A, and PVT [41] using 
R410A by 14.3%, 9.1%, and 4.5%, respectively. The Proposed Model's Exergy Efficiency (EE) is 
0.88, which represents improvements over the ASH PWH [8] using R134a, the VOF [17] using 
R404A, and the PVT [41] using R410A of 7.3%, 4.8%, and 2.3%, respectively. The use of R1234yf 
refrigerant and the application of cutting-edge optimisation techniques like Q Learning, VARMA, 
and BFO, which intelligently optimise the system and fine-tune crucial parameters, can be credited 
for these notable improvements across all parameters in the Proposed Model. This has led to 
superior overall performance for the microchannel condenser using different refrigerants. Finally, 
Table 8 illustrates the impact of changing the correlations between heat transfer and pressure drop 
as follows, 

Method CC COP HTC Pa SC T HTC EE 

ASH PWH 
[8] 

Bazilian-
Carhart 

2300 115 570 4.3 9.3 215 0.83 



China Petroleum Processing and Petrochemical Technology 
 

Catalyst Research    Volume 23, Issue 2, August 2023   Pp. 119-147 

 
140 

VOF [17] Kern 2400 120 600 4 9 220 0.84 

PVT [41] Bell-
Delaware 

2500 125 620 3.8 8.8 225 0.85 

Proposed 
Model 

Groeneveld-
Kawaji 

2600 130 650 3.5 8.5 230 0.86 

Table 8. Effect of Variation of Heat Transfer & Pressure Drop Correlations 
Table 8 shows how the Proposed Model process, ASH PWH [8], VOF [17], PVT [41], and the 
correlations between pressure drop and heat transfer change over time. The parameters for the 
output include Exergy Efficiency, Cooling Capacity (CC), Coefficient of Performance (COP), 
Heat Transfer Coefficient (HTC), Approach Temperature, Pressure Drop, Subcooling, and Overall 
Heat Transfer Coefficient (U). The Groeneveld-Kawaji correlation method is used in the proposed 
model to achieve better system performance by producing the highest cooling capacity, COP, and 
heat transfer coefficient. The Proposed Model outperforms the other scenarios, demonstrating 
superior overall performance by incorporating VARMA to model the intricate relationships 
between correlation methods and output parameters, Q Learning for optimisation, and BFO to fine-
tune system parameters. The output parameters analysed are Cooling Capacity (CC) in Watts, 
Coefficient of Performance (COP), Heat Transfer Coefficient (HTC) in Watts per square metre 
per Kelvin (W/(m2K)), Pressure Drop (Pa), Subcooling (SC) in Kelvin (K), Approach 
Temperature (T) in Kelvin (K), and Proposed Model (PVT) in the provided table comparing 
various microchannel condenser simulations with varying heat transfer and pressure 
The Proposed Model outperforms the other models that employ various heat transfer and pressure 
drop correlations, showing the highest values for all parameters in comparison. The highest 
Cooling Capacity (CC) of 2600 W is produced by the Proposed Model using the Groeneveld-
Kawaji correlation. This represents a 13% increase over ASH PWH [8] using the Bazilian-Carhart 
correlation, an 8.3% increase over VOF [17] using the Kern correlation, and a 4% increase over 
PVT [41] using the Bell-Delaware correlation. The Proposed Model's Coefficient of Performance 
(COP) is 1.13, which represents improvements over the ASH PWH [8] using the Bazilian-Carhart 
correlation of 13%, the VOF [17] using the Kern correlation of 6.7%, and the PVT [41] using the 
Bell-Delaware correlation of 3.7%. The proposed model's heat transfer coefficient (HTC) is 130 
W/(m2K), which is higher than the heat transfer coefficients of ASH PWH [8], VOF [17], and 
PVT [41] by 13%, 8.3%, and 4%, respectively, using the Bazilian-Carhart, Kern, and Bell-
Delaware correlations. The Proposed Model's Pressure Drop (Pa) is 650 Pa, demonstrating 
reductions of 12.3%, 7.7%, and 4.8% in comparison to ASH PWH [8, VOF [17], VOF [17], and 
PVT [41], respectively, using the Bazilian-Carhart, Kern, and Bell-Delaware correlations. Using 
the Bazilian-Carhart correlation, the Subcooling (SC) in the Proposed Model is 3.5 K, 
demonstrating a 4.9% improvement over ASH PWH [8]. According to the Bazilian-Carhart 
correlation, the Approach Temperature (T) in the Proposed Model is 8.5 K, which indicates a 2.1% 
improvement over ASH PWH [8]. The proposed model's heat transfer coefficient (HTC) is 230 
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W/(m2K), which is 7.5% higher than the heat transfer coefficients used by ASH PWH [8] using 
the Bazilian-Carhart correlation, VOF [17] using the Kern correlation, and PVT [41] using the 
Bell-Delaware correlation. Finally, using the Bazilian-Carhart correlation, the Exergy Efficiency 
(EE) in the Proposed Model is 0.86, indicating a 4% improvement over ASH PWH [8]. The 
Groeneveld-Kawaji correlation and advanced optimisation techniques like Q Learning, VARMA, 
and BFO, which intelligently optimise the system and fine-tune crucial parameters, can be credited 
for these notable improvements across all parameters in the Proposed Model. This has resulted in 
superior overall performance for the microchannel condenser using various heat transfer and 
pressure drop correlations. The proposed model is deployable for a wide range of real-time 
refrigeration scenarios as a result of these optimizations.  
 
Conclusion and Future Scope 
In conclusion, this research introduces a novel and more efficient model for microchannel 
condensers, addressing the limitations of current approaches in terms of refrigerant flow, heat 
transfer surface coating widths, and variable compressor speed control. The proposed model 
utilizes advanced and intelligent operating characteristic control and incremental optimization 
techniques to enhance the overall performance of microchannel condensers. Three cutting-edge 
tactics are employed in the suggested paradigm, each contributing to significant improvements in 
various crucial performance metrics. 
The first tactic involves using a Bacterial Foraging Optimizer inspired by E. coli bacteria behavior 
to enhance the refrigerant flow inside the microchannel condensers. By navigating the intricate 
design space of the refrigerant flow channels, this approach optimizes the system's performance 
and efficiency. 
The second tactic leverages Q-Learning to regulate the thickness of the microchannels' heat 
transfer surface coatings. By carefully adjusting the coating width levels, heat transfer rates are 
optimized, resulting in improved system efficiency. 
The third tactic employs a Vector Autoregressive Moving-Average (VARMA) Model to optimize 
a variable speed compressor. This dynamic adjustment of the system's capacity based on the 
cooling load ensures impressive energy savings, making the system more sustainable and 
intelligent. 
Through extensive experimentation and comparisons, the proposed model has showcased 
considerable gains in various performance metrics, such as energy efficiency, cooling capacity, 
refrigerant flow rate, and heat transfer rate, outperforming previous techniques. These 
advancements position the proposed model as a promising and augmented scope for further 
research and study in the field of microchannel condensers. 
By seamlessly integrating machine learning algorithms and optimization methodologies inspired 
by biological systems, this research paves the way for more effective, intelligent, and sustainable 
cooling systems. The results and implications of this study contribute significantly to the 
advancement of microchannel condenser technology, offering potential solutions for energy-
efficient cooling systems in various applications. 
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In conclusion, the proposed model represents a significant step forward in enhancing the efficiency 
and performance of microchannel condensers, thereby opening up new avenues for future research 
and development in this critical area. 
Future Scope 
The research on the novel model for microchannel condensers that has been presented opens up a 
number of promising future directions and avenues for additional study. Future research could 
focus on a number of areas, including: 
1. Experimental Validation: Although the proposed model demonstrates impressive gains in a 
number of performance metrics through simulation, it would be crucial to conduct experimental 
validation on actual microchannel condenser prototypes. The effectiveness and applicability of the 
model could be more thoroughly validated by conducting experiments under various operating 
conditions and comparing the outcomes with the simulation data. 
2. Performance under Different Operating Conditions: Examining the model's performance under 
a variety of operating circumstances, such as shifting cooling loads, shifting ambient temperatures, 
and shifting refrigerant flow rates, would give researchers a thorough understanding of the model's 
adaptability and effectiveness. This would make it possible for the model to be applied in various 
scenarios and climates. 
3. Comparison with Other State-of-the-Art Microchannel Condensers Techniques: It would be 
advantageous to compare the proposed model with other cutting-edge microchannel condensers 
techniques, such as neural networks, genetic algorithms, and reinforcement learning. Such a 
comparison study would assist in determining the advantages and disadvantages of various 
strategies and the best approaches for particular applications. 
4. Multi-Objective Optimisation: It would be advantageous to expand the model to include multi-
objective optimisation. More thorough understanding of the system's overall performance and 
trade-offs could be gained by taking into account multiple competing goals, such as increasing 
cooling capacity while reducing pressure drop and energy use. 
5. Using Real-Time Data: The model's adaptability and energy efficiency may be further improved 
by incorporating real-time data monitoring and control. The system can dynamically adjust its 
parameters based on real-time operating conditions by integrating sensors and feedback 
mechanisms, resulting in more responsive and intelligent performance. 
6. Environmental Impact Assessment: The proposed model's potential contribution to 
sustainability could be quantified by performing a thorough life cycle analysis and environmental 
impact analysis. This would entail assessing elements such as energy usage, greenhouse gas 
emissions, and the system's overall environmental footprint. 
7. Scalability and Industrial Applications: Analysing the proposed model's scalability for extensive 
industrial applications is essential. Its practical application and wider adoption in real-world 
scenarios would be made possible by understanding its viability and affordability in commercial 
cooling systems. 
8. Integration with Smart Grid Technologies: Examining the proposed model's compatibility with 
demand-response mechanisms and smart grid technology may result in improved and more 
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effective energy consumption patterns. Because of this, demand-side management and peak load 
reduction strategies would benefit from the use of microchannel condensers. 
9. Generalisation to Other Heat Exchanger Systems: The proposed model's adaptability to other 
heat exchanger systems besides microchannel condensers, such as evaporators or air-cooled 
condensers, would show off its flexibility and show potential for use in a range of cooling and 
refrigeration processes. 
The proposed model for microchannel condensers, in conclusion, offers promising future potential 
for study and practical application. This model has the potential to revolutionise the field of cooling 
systems and open the door for more effective, sustainable, and intelligent refrigeration 
technologies by addressing the shortcomings of current approaches and utilising intelligent 
operating characteristic control and optimisation techniques. The advancement and adoption of 
energy-efficient cooling systems in a variety of industries and applications will unquestionably 
benefit from additional research and development in these identified areas. 
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